
Picking the “best” noise model; evaluating the results from est_noise

Below are two commentaries discussing how one might chose the “best” noise model amongst the 
variety of noise models analyzed using est_noise.  I’m covering the topic as two parts with the first 
written several years ago using est_noise7.22 (which was fixed to become version 7.30). The second 
part was written recently using version 8 of est_noise.  Part 1 gets a bit messy as it attempts to look at 
various factors that could influence a quantitative evaluation of the merits of competing noise models. 
The second part is a simplification where the potential complications are not evaluated, but still 
provides essential guidance in selecting a “better” model.  My view towards this topic revolve around 
hypothesis testing where one evaluates a metric derived from a “simple” noise-model and compares 
that with the revised metric from a more complex model; essentially, testing the more complex model 
against the “null” hypothesis of simple model; statistics 101.  

PART 1
John Langbein

Revised; May 2021
                
The program, est_noise, provides the user a variety of colored noise functions that models and 
measures the background noise in various time-series. Amongst the noise models potentially tested 
with est_noise, it is desired to have a method to quantitively select one  “best” noise model over 
competing noise models.  The following describes the results of multiple experiments of simulations of 
colored noise where the coefficients of different noise models are estimated. With each simulation, 
there is an associated Max. Likelihood estimate (MLE) (actually, log likelihood). Can the differences in 
MLE, dMLE between two competing models, be used to statistically determine whether the simplest 
noise model, termed the null model, can be rejected in favor of the more complex?  If so, then what is 
that threshold and its associated confidence? Does that threshold depend upon the length of the time 
series and does that threshold depend upon the “strength” of colored noise relative to white noise?  In 
part, this study replicates Figure 4 in Langbein (2004). Noted then, and replicated here is the 
anomalous behavior of Gauss-Markov noise.

Five conclusions are:
1) Threshold dMLE has a some dependence upon the 
length of the time series.
2) Threshold dMLE depends upon both the candidate 
noise model and the null model.
3) Threshold dMLE has only a small dependence upon 
the size of the colored portion of the noise in the time-
series.
4) Two other metrics, Akaike and Bayesian Information 
Criterion (AIC and BIC), that are related to MLE are 
also evaluated as a means of selecting the better model, 
but neither of these metrics are recommended.

The basic test simulates multiple time series that are a 
combination of white noise plus random walk noise and 
this is identified as the “Null” noise model.  For the 
experiment described here, I've created 5000 such time 
series. The underlying model consists of 0.5 mm of 
white noise and random walk consisting of amplitudes of 

Figure 1;  Power spectra of the underlying 
noise for simulated time series. The thicker 
line is for 1 mm/yr0.5 used in most experiments.  
The thin, dashed lines represent the 5 lengths, 
20, 15 (1/15 c/yr), 10, 5, and 3 years.



either 0.1, 0.3 1.0, 3.0 or 5.0 mm/yr0.5 . Along with estimating the parameters of the noise model(s), 
est_noise estimates the rate, and the amplitude/phase of annual and semi-annual period sinusoids. 
Neither the rate nor the sinusoids are prescribed to be present in the simulated time-series. Figure 1 
shows the power spectra of these simulated time series. With each simulated time-series, I use 
est_noise to compute the parameters of various noise models, (all include white noise), random walk 
(RW), Power Law (PL), Flicker plus Random Walk (FLRW), Band-passed filtered plus RW (RWBP), 
combination of BP, FL, and RW (FLRWBP), FOGM and GM (or generalized Gauss-Markov G-GM). 
For each of these noise models, MLE is saved and compared with the null RW model yielding dMLE 
for FLRW – RW, PL – RW, and so on.  

One set of experiments simulated time series of 
different lengths, 3, 5, 10, 15 and 20 years. These all 
used the 1 mm/yr0.5 value of random walk. A second set 
of experiments uses 10 years of simulated data and 
varied the size of the simulated random walk. 
Simulations were done 5000 times with the expectation 
that dMLE can be evaluated as a threshold to reject the 
null model. A third set of experiments tests the impact 
of dMLE of estimating rate when the rate parameter 
input to est_noise is set to zero.  With each of these 
experiments, the dMLEs are tabulated and sorted such 
that probability plots are constructed, Figure 2. For the 
examples that follow, I've selected the dMLEs, one that 
corresponds to a 99% confidence in rejecting the null, 
RW model. (This corresponds to 0.01 in the probability 
plot in Figure 2). For 5000 simulations, the threshold 
with 99% confidence-level in dMLE would have 50 
values of dMLE > the threshold.,

1)  dMLE vs Time series length:  Figure 3a show the 
results of determining the threshold of dMLE for a variety of noise models compared against the null 
for different lengths of time series, from 3 to 20 years. Each simulated time series has a background 
rate of zero and 1 mm/yr0.5 of random walk and 0.5 mm of white noise and spans a prescribed amount 
of time, 3, 5, 10, 15 or 20 years. Then for each simulated time-series, est_noise simultaneously 
estimates the rate, the amplitude of two sinusoids (annual and semi-annual periodicity), the white noise 
and the random-walk amplitude (the rate and periodicities are typically estimated for most GPS time-
series). It was assumed that the noise model is additive as described by Langbein (2017) such that 
est_noise runs quickly. (There are no gaps in the simulated time-series). For each simulated time-series, 
the value of MLE is saved. The first “run” with est_noise assumes the RW model and is identified as 
the null-model. Then for each time series, more complex noise models are evaluated as they have at 
least one more free parameter than RW. Those models are PL, FLRW, FOGM, GM, RWBP, and 
FLRWBP. These simulations were repeated 5000 times providing the ability to determine the 
distribution of dMLE in terms of a probability plot based upon numerically sorting dMLE. Since the 
underlying model of noise is RW, the change in MLE associated with the more complex model, which 
includes a RW term, should be 0. In reality, the value of dMLE will be “close to zero” but there will be 
a few dMLEs that exceed 0. With each noise model, the difference in MLE is computed and saved. 
After a numerical sort of the dMLEs, the 99% level of dMLE is identified; that is for 5000 simulations, 
the dMLE for which there are 50 values greater is identified as the 99% level to reject the null 
hypothesis. The results of these simulations are shown in Figure 3a. Note, for the 10-year time span, 

Figure 2, Example of a cumulative histogram 
of dMLE of 6 noise models relative to RW 
noise. For reference, the 0.05 and 0.01 levels 
are indicated.



this experiment was run four times to test the ability of determining dMLE with 5000 simulations. 
Several features are apparent: 1) dMLE depends upon the pair of models used for comparison. For 
example, when comparing PL against RW with 10 years of data, any dMLE greater than ~4.0 suggests 
that the null model can be rejected at the 99% confidence level. On the other hand, dMLE only needs to 
exceed 3.3 to reject the null RW-model in favor of FLRW model. 2) The threshold dMLEs for any 
noise model using GM noise is roughly twice the other dMLEs that use BP, FLRW, or PL noise. (This 
is discussed below.) 3) dMLE has an inverse dependence upon the length of time of the time series. 4) 
The robustness of these thresholds have been tested by running the 10-year simulation three more times 
each with 5000 synthetic time-series.  The range in 99% C-I for dMLE to reject RW in favor of PL is 
from 3.97 to 4.31. The robustness is illustrated in Figure 3a which for the 10 year intervals, show the 
threshold dMLEs that determined to reject the null, RW model.

The experiments in Figure 3a were repeated using different amplitudes of RW noise as the null model.
These are shown in Figures 3b and 3c where the RW is 0.1 and 5.0 mm/yr0.5.

  

Figure 3a. Differences in MLE from a variety of noise models relative to the NULL random walk model 
of noise for a variety of lengths of time series.  In this set of experiments, RW is 1 mm/yr0.5. The values 
are listed in Appendix 2.

Figure 3c. Same experiments but the null RW 
model is 0.1 mm/yr0.5

Figure 3b: Same experiments as Figure 3a 
but the null RW model is 5.0 mm/yr0.5



The results shown in Figure 3b, where the input RW noise is 5 mm/yr0.5 essentially replicates the results 
in Figure 3a which used and input RW of 1 mm/yr0.5. On the other hand, if the input RW noise is 
reduced to 0.1 mm/yr0.5, the results for the shorter, 3 and 5 year lengths, are anomalous for dMLE 
relative to time series with larger values of RW. Basically, with low amplitude RW noise, as shown in 
the power spectra in Figure 1, RW amplitude is only marginally detectable relative to white noise at 
these shorter intervals. Consequently, trying to resolve other low amplitude components of a more 
complex noise model is also difficult.

A further set of test is described in Appendix 1 where, instead of using RW as the null model, FLRW is 
the null model, and it is tested with the more complex FLRWBP noise-model.

2. dMLE vs Amplitude of Random Walk noise:  Figure 4 shows the results of threshold dMLE for 
different amplitudes of random-walk noise in simulated time series. For these sets of experiments, 
simulated noise were created using 0.1, 0.3, 1.0, 3.0 and 5.0 mm/yr0.5 random walk added to 0.5 mm of 
white noise. However, the experiments used only 10 years of simulated data. 

Unlike the dependence of dMLE on time-series length discussed in the previous section, dMLE does 
not show obvious dependence on the amplitude of the underlying noise. For instance, the 99% 
threshold of dMLE to reject the RW model in favor of FLRW is 3.6 if the underlying RW amplitude is 
0.1 mm/yr0.5 and 3.5 if the underlying RW amplitude is 5.0 mm/yr0.5. However, this observation breaks 
down for trying to distinguish any GM noise from noise source with a low level of RW noise (0.1 
mm/yr0.5 ,green and cyan colored symbols).

Also tabulated and displayed is likely scenario where one might assume that the null model is FLRW,
and wish to test whether the addition of BP noise could better characterize the background rate. The 
threshold dMLEs are shown with 'x' in Figure 4.

3. Impact of estimating rate in evaluating dMLE; correlation with FOGM/GM noise models. This 
test consisted of 600 simulations of 5 year long time-series with 1 mm/yr0.5 RW plus 0.5 mm white 
noise. For each simulated time series, est_noise is run first with estimating the rate plus the parameters 
of the seven noise models, then a second time where the rate is assumed to be zero. The probability 
plots for both of these “runs” are shown in Figure 5 and 6.

Figure 4. Differences in MLE from a variety of noise models relative to the NULL random walk model of 
noise for a variety of levels of random-walk noise.



The key difference between the two probability 
plots is the lower dispersion of the rejection criteria of dMLE when rate is not estimated. This is 
particularity evident with the FOGM and the GM models when compared to the RW model, green and 
cyan lines, respectively. The differences in the 95% C-I are shown in Table 1 where the FOGM and 
GM models comparisons are highlighted.

Table 1: dMLE thresholds from 600 simulations 
testing the impact of estimate rate, 5 year time-series

Model comparison dMLE, 95% C-I rejection 
threshold

Rate estimated  Rate NOT 
estimated

PL – RW 2.19 2.04

FLRW - RW 1.75 1.47

FOGM - RW 4.09 2.10

GM - RW 5.34 3.30

BP - RW 2.71 2.54

FLRWBP - RW 3.35 3.04

For the PL, FLRW, and both BP models, the impact estimating rate on dMLE is fairly small, roughly 6 
to 20%. On the other hand, the impact of rate-estimation for the GM models is significant, between 60 
and 95% contrast.

An alternative view of the impact on rate with the various noise models is to plot the histograms of the 
ratio of estimated rate to the estimated standard-error in rate. The results for all 7 types of noise models 

Figure 6. Probability plot of dMLE from 600 
simulations of 5 years of RW noise when rate is 
NOT estimated

Figure 5. Probability plot of dMLE from 600 
simulations of 5 years of RW noise when rate is 
estimated



are shown in Figure 7.  For simulations for which the underlying rate is zero, the histograms of rate 
should cluster about zero, which does occur for all noise models.  However, the rate is normalized by 
its computed standard error; the standard error is derived directly from both the assumed function that 
represent the background noise and its estimated values. For RW noise, the range for normalized rate is 
roughly +/- 3, consistent with expectations that 99% of the rate falls within 3-sigma of the “error bar” 
in rate. Broadly speaking, the +/-3 range for normalized rate is also seen for PL, FLRW, and both BP 
noise models. On the other hand, visually, all 6 of these histogram slightly exceed the +/-3 range and 
include a few outliers, too. 

In contrast, the histograms for both GM noise models show that the nominal range for normalized rates 
vastly exceeds +/-3 and is closer to +/-10, shown in Figure 7. NOTE –  Version 7.30 fixes this 
problem, so ignore the two histograms that involve GM noise.  

 Figure 7 Histograms of estimates of normalized rate (rate divided by the error in rate) using 7 
different noise models from 600 simulations of 5 years of data for which underlying rate is zero.



4. Are either AIC and/or BIC better than MLE to discriminate between models?. Two other 
metrics have been used in the “literature” that might help with deciding which of the two competing 
models is best, Akaike information criterion (AIC) and Bayesian information criterion (BIC). Both of 
these metrics are output by est_noise, and importantly, they are calculated directly from MLE. 
However, unlike MLE, AIC also includes a term that represents the number of unknown parameters, 
which for est_noise, include the time-dependent parameters (ie, rate and sinusoidal terms) and the 
parameters of the noise model. Therefore, the number of unknowns will increase as a more complex 
noise model is compared with the null model.
          AIC = 2*m - 2*MLE
where m is the number of unknowns.
                        
Like AIC, BIC incorporates the number of unknowns and, in addition, the number of observations into 
a form:
       BIC= m*ln(n)-2*MLE
where n is number of observations.

With some simple arithmetic, dAIC and dBIC are computed as:
    dAIC = 2(mb – mn) -2*dMLE
    dBIC = (mb  – mn)*ln(n) – 2*dMLE
where mn is the number of parameters in the null model and  mb is the number of parameters in the 
more complex model.  For instance, (mb  – mn) is 1.0 for comparing FLRW, PL, and FOGM against the 
null RW model, but becomes 3.0 when comparing the FLRWBP with the null RW model (note that the 
BP model has two additional parameters, the number of poles and the amplitude of BP noise). Note that 
sense for thresholds for rejecting the null hypothesis using either AIC or BIC is opposite from MLE; 
the dAIC/dBIC must be less than the threshold to reject the null model. 

Assuming that AIC and BIC accounts correctly for the number of unknowns and the length of the data 
(BIC), I anticipate that one or both of these metrics should show invariance with the number of model 
parameters and/or the length of the data set.

Figure 9 and 10 reproduce the results shown in Figure 3a but use dAIC (Figure 9) and dBIC (Figure 
10). For better comparison with the dMLE plot in Figure 3a, I have chosen to divide by two both dAIC 
and dBIC.

Figure 9.  Results from Figure 3a (Input RW is 1 
mm/yr0.5 ) that rescale dMLE to dAIC; dAIC is 
plotted against the length of the simulated data.

Figure 10.  Results from Figure 3a (Input RW is 1 
mm/yr0.5) that rescale dMLE to dBIC; dBIC is 
plotted against the length of the simulated data.



The results shown in Figures 9 and 10 show that neither dAIC nor dBIC remove the dependence on the 
time-series length nor do they remove the dependence upon model types.  In fact, the dBIC results 
amplify the length dependence.  Consequently, I do not recommend using either AIC or BIC as means 
to discriminate between models.                                                                                                  

The poor performance of dBIC is demonstrated in Figure 11. Here, the dMLE threshold for the 99% 
confidence level is replotted from Figure 3a for testing the FLRW model against the null, RW model as 
magenta squares. If dBIC is supposed to be invariant with time-series length, then dMLE should be 
proportional to ln(365.25*t), with t being the length of the time-series. The value of this function 
increases with time-series length, shown with a dashed-black curve, but that prediction is not consistent 
with the threshold dMLEs. On the other hand, three other functions are evaluated and their best fits to 
the threshold dMLEs are shown in Figure 11. These functions, ln(t), e-t/2, and t-1.7, are shown with a 
dashed blue curve, dashed red curve, and a solid magenta curve. The best fitting, at least for this set of 
dMLEs, is the  t-1.7 curve; although the exponential is a close second.

Flicker Noise Only – Maximum detectable RW noise needed to reject FL in favor of FLRW noise: 
This part is only a partial note with respect to detecting RW noise in the presence of FL noise.  Often 
with GNSS time series, especially with vertical displacement solutions, est_noise suggests that the best 
noise model is that of FL (and white noise).  However, work with borehole strainmeters and other ultra-

sensitive instruments used to measure crustal deformation indicates that a major source of noise has 
RW characteristics that are probably related to the coupling that instrument to the ground; the belief is 
that the ground exhibits Brownian motion which is a random-walk. Although other statistical processes 
might be larger than random-walk, that is flicker, the presence of RW can have a significant impact on 

Figure 11: dMLE 99% thresholds for FLRW - RW test 
from Figure 3a are plotted with magenta squares. In 
addition, four functions that relate time-series length are  
plotted.



the estimate of the “error bar” for rate – that is, even if est_noise can't detect RW, RW could be present 
and needs to be factored into the estimate of the “error bar” for rate.

Concluding remarks:      Using 5000 simulations, I am able to characterize some properties of dMLE 
used as a threshold to distinguish between the null model and a more complex noise model.  I found 
that the threshold value of dMLE will depend upon the two models being compared.  In addition, the 
threshold dMLE shows a dependence on the length of the time-series. On the other hand, dMLE seems 
insensitive to the amount amplitude of noise in the time series.

Like earlier analysis by Langbein (2004), the threshold dMLE for Gauss-Markov noise tends to be 
much higher, by about 2x, than thresholds for the other noise models including Band-passed filtered.

Although dAIC and dBIC factor in the number of unknowns and the length of the time-series, neither 
of these statistical parameters provide any significant help relative to dMLE with discriminating a more 
complex model from the null model.

Finally, although dMLE is a valuable metric, I suggest that one needs to examine the plots of “drift” or 
wander real data in comparison to the drift computed from the estimated noise models.

APPENDIX 1:
Testing FLRWBP against the null, FLRW model.  Following earlier recommendation of Langbein 
(2012?), it is advantageous to use the FLRW noise model to represent the background noise in GPS 
time series. This cuts-out computations needed for RW, FL, and PL models as it is assumed that GPS 
colored noise is a combination of random-walk noise of the GPS monument and flicker noise 
introduced by the GPS system. In addition, relative to using the nearly equivalent PL model of noise, 
the presence of the RW component in the FLRW model provides a slightly, more conservative estimate 
on the “error-bars” in the parameters describing the time-dependence, namely the rate. Consequently, 
using FLRW as the base noise model, one only needs to test whether additional BP noise is present in 
the time-series.  Figure A1 shows the results of determining the threshold dMLE to discriminate 
between these two choices.

Like the tests used to construct Figures 2 and 3 in the main text, the results presented use 5000 
simulations and a numerical sort of the difference between the MLEs for the more complex FLRWBP 
model and the null, FLRW model.  However, rather than using synthetic time series using noise having 
only RW (plus WN), the time series for both methods 1a and 1b were constructed having each 0.5 
mm/yr0.5 RW, 0.5 mm/yr0.25 FL and 0.5 mm of WN.  The only difference between the two “methods” is 
that 1a was done by me and 1b was done by Jerry Svarc using the same program, est_noise, but coded 
in a different unix shell-script than mine.  Consequently, the results shown in Figure A1, (cross and x) 
essentially overlay each other.

In contrast, method 2 is a re-sorting of the results of the experiments that went into Figure 3a.  In those 
experiments, the synthetic time series have 1 mm/yr0.5  random walk with no FL contribution.  In this 
method, I simply assigned the MLE for the FLRW model as the “null” model, and recompiled and 
sorted a list of dMLE with the more complex FLRWBP model.  The results for method 2 indicates that 
the threshold dMLE is  about 10 to 20% larger than the threshold dMLE for method 1.



APPENDIX 2:
Tables with threshold dMLE for 99% confidence level to reject the null hypothesis:

Essentially, the two tables that follow are the values that are plotted in Figures A1 and 3a. I have taken 
the liberty of rounding up by roughly 0.1 units, and even then, that might be not enough to be
“robustly” considered a 99% C-I

FLRWBP vs null FLRW
see appendix 1

Time 
series 

length, 
years

dMLE, 99%
method 

1a/b*

dMLE, 99%
method 2*

3 6.2 8.1

5 4.5 4.3

10 3.9 4.2

15 3.6 4.2

20 3.4 4.3

Figure A1:  Threshold dMLE for rejection the null 
FLRW model in preference to FLRWBP noise. See text  
for description of the methods. The values for Method 
1 are listed in Appendix 2.



dMLE with 99% confidence level to reject null RW model

Length 
of time 
series, 
years

PL FLRW RWBP FLRWBP FOGM G-GM

3 6.3 5.8 10.4 9.7 8.0 8.9

5 4.9 4.1 4.9 5.8 6.6 7.6

10 4.1 3.4 4.2 4.8 6.0 7.0

15 3.8 3.3 4.0 4.7 5.8 6.9

20 3.8 3.1 4.1 4.7 5.8 6.8

                                                                              



PART 2
Notes on MLE Significance

John Langbein
November 2024

The goal of this exercise is to create cumulative histograms of changes in the Maximum Likelihood 
Estimator, MLE, when comparing a more complex noise model with the simpler, null-hypothesis 
noise model. Here, I created a time-series with both 0.5 mm of white noise and 1 mm/yr0.5 random walk 
(RW) (also, in a separate exercise, 1 mm/yr0.25 flicker noise (FL)). This becomes the underlying noise 
model and is termed the ‘null hypothesis’. The time series consists of daily samples spanning 20 years. 
I used the program est_noise (version 8) to estimate the amplitudes of white noise and random-walk 
noise along with the rate (it should be zero). The value of MLE is saved (along with the other 
parameters including rate, and the amplitudes of the noise estimates). Next, I used est_noise to estimate 
the parameters power-law noise (PL), noting that RW noise is a special case of PL where the index, n, 
of the power-law, 1/fn, is not fixed to 2. Again, MLE for this iteration is saved and compared with that 
from RW, thus MLE. For PL, there is one addition degree of freedom, the power law index, relative to 
the null model. Next, est_noise is used to compute the parameters for the generalized, Gauss-Markov 
(GGM) noise and its MLE is saved and compared with that from the null model. GGM has 2 more 
degrees of freedom relative to the null model and one more degree of freedom relative to the PL model. 
The final set of tests are for band passed-filtered noise (BP) with a range of 1 to 4 poles in combination 
with the RW model. The table provides a summary on the number of unknowns for each of the 5 noise 
models being tested.
Noise Model Number of noise 

parameters
Random Walk (RW) + white noise (WN) NULL 2
Power law (PL) + WN 3
Gauss-Markov + WN 4
Band passed with 1 pole (BP1), RW + WN 3
Band passed with 1 to 4 poles (BPx) + RW +WN 4

  
The above set of calculations were run 1000 times using a different set of simulations of RW + WN 
noise. (or FL + WN). From these simulations, MLEs were tabulated and sorted to provide plots of the 
cumulative histograms for each difference of MLEs. The expectation is that with more model 
parameters than the null model, then the MLE should be larger than that from the null model. Then 
from the cumulative histograms, the 68%, 95%, and 99% confidence levels can be identified for which 
the null model can be rejected in favor of the more complex model. These comparisons are carried out 
for PL-null, GGM-null, GGM-PL, (BP1+null)-null, and (BPx+null)-null. Figures 1 and 2 show these 
histograms where null is either RW in Figure 1 or FL in Figure 2.

The upper left of Figure 1 shows the cumulative histogram of the PL model compared with the null, 
RW model. In each plot, I’ve identified the 68%. and 95%, levels as horizontal, black, dashed lines. 
The 68% level intersect the cumulative histogram when MLE=0.51 indicating that 68% of the 
simulations had a MLE that fell between 0 and 0.51.  And, for 99% of the simulations, the change of 
MLE were less than 3.80.



Figure 1: Change in MLE for PL, GGM, and BP noise models relative to the null, 
RW model of noise
 
Consequently, for any simulation that MLE>3.80, that represents 0.01 probability that the null 
hypothesis (RW) is better than the PL model, or one can reject the null model in favor of the PL model 
with 99% confidence.The black, vertical, dashed lines show where the MLE where cumulative 
histogram matches the 68%, 95%, and 99% levels. This identification is carried through with the GGM 
vs RW, and the GGM vs PL comparisons. For the comparison of the BP models with RW (lower right), 
I’ve combined two different sets, the black cumulative histogram is the comparison with BP having 
only a single pole (BP1) and the red cumulative histogram is for the case where the poles can range 
from 1 to 4 (BPx). The identification of the 68. 95, and 99% levels of MLE are color coded with the 



vertical black lines being those for BP1 and the red being for Bpx.

For many of the comparisons of the BP models with RW, the computed change in MLE was negative 
indicating that est_noise failed to correctly iterate to the appropriate value of the amplitude of BP noise; 
est_noise should have converged to zero for the amplitude of BP noise which would have resulted in 
MLE=0.  Instead, for those negative values of MLE, I change them to be zero when counting for the 
cumulative histogram. Consequently, the two cumulative histograms associated with BP noise have a 
large step at zero.

For reference, I plot in blue the cumulative histogram of a one-sided, normal distribution. That 
distribution has been normalized such that its 68% level matches that from cumulative histogram of 
MLE. For the cases of GGM-RW and GGM-PL, the cumulative histogram of MLE closely matches 
the distribution from a one-sided normal distribution. For the other two cases, PL-RW and BP-RW, the 
distribution of MLE have heavier tails than that predicted by a one-sided, normal distribution.

Also, noted with a dashed, vertical green line is the point where MLE corresponds to AIC=0. AIC has 
often been used as a metric to decide which noise model is most appropriate. For instance, with the 
comparison of PL versus RW, MLE=1 corresponds to AIC=0 and, from the cumulative histogram, that 
corresponds to approximately 0.85 probablity that RW can be rejected in favor of PL.  For the same 
comparison with GGM versus RW, MLE=2 corresponds to AIC=0. This corresponds to an 
unimpressive 0.55 probability that RW can be rejected in favor of GGM. The point here is that AIC 
doesn’t consistently quantify the probability of selecting the “best” noise model.

Below, I tabulate the 68, 95, and 99% values of MLE used for hypothesis testing.
MLE needed to reject the null hypothesis 
where underlying noise is RW+WN

Noise test 68% 95% 99%
PL-RW 0.51 1.86 3.80
GGM-RW 2.51 5.00 6.47
GGM-PL 1.89 3.87 5.63
BP1-RW 0.16 1.54 2.81
BPx-RW 0.72 2.41 4.34

MLE needed to reject the null hypothesis 
where underlying noise is FL+WN

Noise test 68% 95% 99%
PL-RW 0.54 2.30 4.30
GGM-RW 2.51 4.78 6.64
GGM-PL 1.81 3.81 5.35
BP1-RW 0.16 1.50 3.25
BPx-RW 0.54 2.35 4.09

    



Figure 2: Change in MLE for PL, GGM, and BP noise models relative to the null, 
FL model of noise

 Note that the cumulative distribution curves resemble each other in the two figures; there are some 
small differences in the MLE levels for probabilities as noted in the two tables.


