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This report compares the results from simulations of noisy time series from three programs

that quantify the amount of generalized Gauss-Markov noise (GGM). There are two motivations.

The first motivation comes from analysis of decades long creepmeter data that measure aseismic

slip on the San Andreas fault; these data suggest that the background, natural variations in creep

are consistent with a GGM process with a very steep power-law component. Secondly is the

observation that, in many cases, the standard deviation of rates calculated by one program,

est noise, can exceed its calculated rate uncertainty by a factor of three. In principle, these two

values should be nearly equivalent. On the other hand, for the same set of simulations, the

program hector (estimatetrend) yields nearly equivalent values of the standard deviation in rate

with its calculated rate uncertainty, as expected. However, results from the program cats are

similar to those from from est noise.

A summary of this comparison is shown in Figure 1 for a variety of different sets of

simulations. Specifically, these simulations were carried out as follows; Specify the level of power

law noise and its index, the amount of white noise, the characteristic frequency of GGM noise, fo,

and the length of the time series. To obtain the results shown in Figure 1, the power-law

amplitude is specified to be 2.7 with an index of 2.5, no white noise, and 10 year long time series

with daily sampling and no gaps. The specified GM frequency was varied between 0.01 and 15

cycles/year. A represented power spectra is shown in Figure 2. For each set of simulations, 42

different time series were generated. Each time series was analyzed by each of the three programs

and the calculated rates and their uncertainties were tabulated. For est noise, the program was

instructed to calculate the rate and uncertainty using the specified parameters of the simulated

time-series. For hector, its parameter, φ, was held fixed, and the program optimized the values of

power law amplitude and its index. (φ = 1 − 2πfo/ts, where ts = 365.25) For cats, the power law

index and the GM frequency were held fixed while the power-law amplitude optimized. In

addition, from the est noise program, a second rate was also saved as that rate assumed that the

1



time series had no temporal correlations (ie, a diagonal covariance matrix); that is identified as

the white-noise solution.

In addition to Figure 1, scatter plots from all of the simulations were made and

representative samples are shown in Figures 3 through 5. Each scatter plot shows the results of

estimating rate and its uncertainty from each of the 42 simulations. The scatter plots show

comparisons of rates calculated by hector and est noise, hector and the white noise assumption of

noise, hector and cats, and est noise and cats. Ideally, for all four sequences of plots, the rates

show fall on a linear, 1 to 1 line, which is provided for convenience. In general, the one-to-one

adherence to this trend is found with hector and white noise, and est noise and cats.

Figure 3 exemplifies the divergence between est noise/cats and hector where the GM

frequency, fo = 1.4. There are two scatter plots where the rates calculated from hector are

compared with those calculated by est noise (upper left) and cats (lower left). Both show a lack of

correlation between these sets with hector being in common. On the other hand, the rates

calculated by both est noise and cats show a very strong correlation (lower right) or equivalence.

And, the the rates calculated by hector are nearly equivalent to the white-noise model (upper

right). These relationships are also illustrated in Figure 1 when fo = 1.4.

Two ”end-member” cases are illustrated in Figures 4 and 5. In Figure 4, the GM frequency

is specified to be low, fo = 0.03 or equivalent to 33 years, or a factor of 3 longer than the 10 year

long time-series. This represents the case where the underlying noise model is close to that of a

power law. In that case, the scatter plots in all four cases show a high correlation or that all of

the programs provide essentially equivalent values of rates. As expected, the comparison of rates

using the white-noise model, show more scatter than those from the other three comparisons as

the white noise assumption is clearly violated in the presence of strong temporal correlations.

The results in the other ”end-member, Figure 5, show the comparison when the GM

frequency is specified to be high, fo = 15 or equivalent to about a month correlation time. In all

cases, scatter plots show a strong correlation between the results of the programs and with the

white noise model.

The divergence between est noise/cats and hector for their rate estimates is shown in

Figure 1 when 0.2 < fo < 6 cycles/yr illustrated by the solid lines. In addition, for a larger range

in GM frequencies, 0.02 < fo < 6 cycles/yr, the rate uncertainties calculated by est noise/cats are

underestimated by as much as a factor of 4 (fo = 1.4) when compared the standard deviation in

rates. Unlike hector where the standard deviation of rates are nearly equivalent to the calculated

rate uncertainty (ie, the solid blue line is nearly equivalent to the dashed blue line), the rate

uncertainties calculated by both est noise and cats lie below both their standard deviations in rate

and also below the rate uncertainties computed by hector.
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Table 1: Comparison of values of estimated power-law amplitude, index, and GM frequency when
all are optimized

program power-law index power-law amplitude GM frequency std. dev rate rate uncertainty
input noise 2.50 2.70 1.41
hector 2.52 ± 0.13 2.71 ± 0.19 1.52 ± 0.29 0.0419 0.0376
est noise 2.50 ± 0.15 2.69 ± 0.14 1.28 ± 0.30 0.1063 0.0263
cats 2.47 ± 0.03 2.64 ± 0.13 1.24 ± 0.29 0.1063 0.0268
error-bars are standard deviation about mean value of noise estimates

A similar relationship between hector and est noise/cats that is shown in Figure 1 for a

power law index of 2.5 also is shown in Figure 6 when the power-law index is 1.5.

I’ve also verified that all three programs can recover accurately the parameters of the

underlying noise model. Again, this was done with 42 simulations of the same set of time series

discussed above, but each program was allowed to optimize the parameters that describe the

GGM noise. The results are summarized in Table 1. All three programs provide internally

consistant values of the noise parameters that are close to the values of the simulations. As

discussed above, however, the standard deviation of rates and uncertainties from hector differ

from those from est noise and cats.

I’ve also compared the log-likelihood metric for the simulations from Table 1. The average

difference between est noise and hector is -1.5 with a standard deviation of those difference is 3.5.

Similarly, the difference in log-likelihood between cats and hector is -1.7 with a standard deviation

of 3.6. Likewise, there is strong agreement between cats and est noise with an average difference

of -0,2 with a standard deviation of 0.6

So, it is a mystery to me about why the rates (and their uncertainties) differ between

hector and the other two programs. One possibility for the differences is the construction of the

data covariance matrix. est noise constructs the covariance matrix from impulse response for

GGM. Bos et al. (2014) provides a formula for the covariance matrix for GGM as:

Cov(i, i+ k) ∼ Γ(d+ k)φk

Γ(d)Γ(1 + k)
2F1(d+ k; d; 1 + k;φ2) (1)

where Γ is the gamma function and 2F1 is the hypergeometric function. I’ve coded that equation

using the hypergeometric function from Numerical Recipes (it has some limitations). In Figure 7,

I show a few comparisons of the first row (or column) of the covariance matrix computed for

est noise and the above covariance function. (Note that for the above equation that, although the

lefthand indexes on both i and k, the i index is dropped for the righthand portion of the equation,

so it doesn’t appear complete.) Examining the covariances for two of the three cases, the
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functional relations between the two programs differ. For the case of first order Gauss-Markov

noise (FOGM), where the power index is 2, both hector and est noise have the same covariance

function. However, comparisons that I made above for indices of 2.5 and 1.5 (Figures 1 and 6),

FOGM have the same discrepancies. So, it would appear that possible differences in the make-up

of the covariance matrices between the two programs is not an explanation.

With est noise, I’ve noted previously the divergence between the standard deviations in

rates from simulations and their calculated uncertainties. Consequently, I have thought that the

calculated uncertainties were too small since the maximum likelihood procedure splits the

optimization in two, one for the deterministic function and the other part for the noise model, but

didn’t consider any possible covariance between the two sets of parameters. For GGM noise, I

have thought that there would be a strong linkage between the rate uncertainty and the GM

frequency. However, the results from hector doesn’t support that idea.

My conclusion, so far, is that both cats and est noise provide the same results, so I don’t

think the difference between hector and est noise/cats is a coding problem, and the problem lies

elsewhere. In addition, hector seems to provide rate uncertainties consistent with the actual

standard deviation of rates that one gets from simulations. In addition, with GGM as the

underlying noise process, I would expect that the estimated rate would be close to that from a

white noise model, which is provided by hector but not est noise or cats.

So, I’m asking for ideas to resolve the differences; although all three programs provide good

measures of the amount of GGM noise in time-series data, my results indicate that hector

provides the most accurate estimate of rate and its uncertainty.

UPDATE: Work-around for cats and est noise

After consulting with Machiel Bos and Simon Williams, I realized, at least for GGM noise,

that the data covariance matrix needs to account for the time preceding the time series of interest;

Machiel calls this ”spin-up” time, but I’ll call that interval ”ghost data”. Both est noise and cats

can be fooled to include ghost data by inserting single, phony observation that precedes the real

data, then requesting that both programs estimate one additional parameter, that being an offset

inserted between the phony observation and the real data. In addition, the input to est noise

needs to be modified such that it will include the phony observation. As a rule of thumb, the

phony observation needs to precede the real data by at least 3 times the time constant of the

GGM process; for example, if fggm = 0.1 c/yr, then the time constant is 1/(0.1 × 2π) or 1.6 years.

For est noise, the work-around caused it to use Cholesky decomposition of the data covariance

matrix rather than the fast, deconvolution algorithm, which could impact the computation time.

I re-ran the examples discussed above, and Figures 8 and 9 demonstrate the effectiveness of
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this work-around. For est noise, as before, I prescribed the known noise parameters so that the

program need not search for the optimal solution. Note that Figure 8 should be compared with

Figure 1, and Figure 9 should be compared with Figure 3. For the summary plots, Figure 1 and 8,

the bulged noted for Figure 1 has disappeared when the work-around was applied to est noise and

cats, Figure 8. Likewise, the scatter plots that compare the rates estimated for all three programs

fall almost exactly on the one-to-one line shown in Figure 9.

A few other observations:

• From table above, the use of ghost data is not required to estimate the parameters that

characterize GGM noise. But, it is required to estimate the rate and its uncertainty.

• The requirement of ghost data to precede the time series is not needed in the case of

power-law noise; with a GGM, the impulse response has a ”hump” within the time-constant

of its initiation. Insertion of ghost data accounts for that hump. On the other hand, the

impulse response for PL noise monotonically decreases (or increases) dependent upon the

index consequently, ghost data are not required.

est noise should be relatively easy to modify to better accommodate GGM noise-model, by

slightly rewriting the final computation of the deterministic model (ie, rate and other parameters)

by forcing est noise to use Cholesky decomposition, inserting ghost data, but accounting for them

as missing data. This modification should minimally impact the computation speed since, for

estimating the noise parameters, the original ”fast” (or deconvolution) algorithm is employed, but

slower, Cholesky decomposition is employed only at the last step where the rate and its

uncertainty is estimated.

UPDATE: Implementing the ”fix” for est noise.

As described above, I made some modifications to est noise such that manually inserting

”ghost” data and an offset is not required. The results are shown in Figures 10 and 11, which are

analogues to Figures 8 and 9. Note that I have not used the ”work-around” for cats in this

example. Essentially, the fixed version of est noise provides the same results using the

”work-around” version described above.

For both hector and est noise, at least for fo between 0.03 and 0.1, the standard deviation

of rate appears to be less than the rate uncertainties by about 10%. Although I haven’t check the

calculation, the standard deviation in rate is computed about the mean value of rate. In principle,

that standard deviation should be computed about a rate of zero, which would increase the size of

the standard deviation.
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Figure 1: Comparison of standard deviation in rates and rate uncertainties from est noise, hector,
and cats from simulations of generalized, Gauss-Markov noise for a variety of cut-off frequencies,
fo, for power-law index of 2.5 and 10 year long time-series.
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Figure 2: Power spectra for one of the sets of simulations of time series of GGM noise where the
power law amplitude and index is 2.7 and 2.5 respectively. The GM frequency is specified to be
1.4 cycle/year. The red trace is the theoretical power spectra while the three black traces are the
median and interquartile spectra based upon 100 simulations
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Figure 3: Scatter plots between rates estimated by est noise, hector, and cats for 42 simulations
of 10 year long time series with a power law amplitude and index of 2.7 and 2.5 and GM of 1.4
cycles/yr
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Figure 4: Scatter plots between rates estimated by est noise, hector, and cats for 42 simulations of
10 year long time series with a power law amplitude and index of 2.7 and 2.5 and GM of 0.03
cycles/yr. With a low value of GM frequency, this set of simulations is closer to power-law noise
with an index of 2.5
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Figure 5: Scatter plots between rates estimated by est noise, hector, and cats for 42 simulations
of 10 year long time series with a power law amplitude and index of 2.7 and 2.5 and GM of 15
cycles/yr. With a high value of GM frequency, this set of simulations becomes closer to white
noise. Note that the step-wise estimates of rates for hector is due to the limited resolution provided
in hector’s output. 10
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Figure 6: Comparison of standard deviation in rates and rate uncertainties from est noise, hector,
and cats from simulations of generalized, Gauss-Markov noise for a variety of cut-off frequencies,
fo, for power-law index of 1.5 and 10 year long time-series.
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Figure 7: Plots of the first row of the covariance matrix used by est noise for GGM (red), hector
for GGM (blue), and est noise for power-law noise (dashed black) for difference values of power law
indices, 2.5, 2.0, and 1.5. Covariances have been normalized by their maximum value such that the
plotted results never exceed 1.0. For all of the GGM covariances, fo = 1.4 cycles/yr.
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Figure 8: Comparison of standard deviation in rates and rate uncertainties from work-around for
est noise and cats with hector for simulations of generalized, Gauss-Markov noise for a variety of
cut-off frequencies, fo, for power-law index of 2.5 and 10 year long time-series.
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Figure 9: Scatter plots between rates estimated by est noise, hector, and cats for 42 simulations
of 10 year long time series with a power law amplitude and index of 2.7 and 2.5 and GM of 1.4
cycles/yr. Note, for est noise and cats, a work-around described in the text has been employed.
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Figure 10: Comparison of standard deviation in rates and rate uncertainties from the fixed version
for est noise and cats (unmodified) with hector for simulations of generalized, Gauss-Markov noise
for a variety of cut-off frequencies, fo, for power-law index of 2.5 and 10 year long time-series.
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Figure 11: Scatter plots between rates estimated by est noise, hector, and cats for 42 simulations
of 10 year long time series with a power law amplitude and index of 2.7 and 2.5 and GM of 1.4
cycles/yr. Note, for est noise uses the fixed version.
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