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Abstract Most time series of geophysical phenomena have
temporally correlated errors. From these measurements, var-
ious parameters are estimated. For instance, from geodetic
measurements of positions, the rates and changes in rates are
often estimated and are used to model tectonic processes.
Along with the estimates of the size of the parameters, the
error in these parameters needs to be assessed. If temporal
correlations are not taken into account, or each observation is
assumed to be independent, it is likely that any estimate of the
error of these parameters will be too low and the estimated
value of the parameter will be biased. Inclusion of better esti-
mates of uncertainties is limited by several factors, including
selection of the correct model for the background noise and
the computational requirements to estimate the parameters of
the selected noise model for cases where there are numerous
observations. Here, I address the second problem of com-
putational efficiency using maximum likelihood estimates
(MLE). Most geophysical time series have background noise
processes that can be represented as a combination of white
and power-law noise, 1/ with frequency, f. With miss-
ing data, standard spectral techniques involving FFTs are
not appropriate. Instead, time domain techniques involving
construction and inversion of large data covariance matri-
ces are employed. Bos et al. (J Geod, 2013. doi:10.1007/
s00190-012-0605-0) demonstrate one technique that sub-
stantially increases the efficiency of the MLE methods, yet
is only an approximate solution for power-law indices >1.0
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since they require the data covariance matrix to be Toeplitz.
That restriction can be removed by simply forming a data fil-
ter that adds noise processes rather than combining them in
quadrature. Consequently, the inversion of the data covari-
ance matrix is simplified yet provides robust results for a
wider range of power-law indices.

Keywords GNSS - Error - Temporal correlation - Time
series

1 Introduction

It has been recognized that many time series of geophys-
ical phenomena include background noise processes that
exhibit temporal correlations (Agnew 1992). These corre-
lations can be characterized by computing a power spectrum
and recognizing that at the highest frequencies, the power
is frequency independent and at the lower frequencies, the
power can be represented by power-law noise, 1/f%. From
these time series, various coefficients are estimated along
with their standard errors. For example, positions determined
from global navigation satellite system (GNSS) measure-
ments can be used to estimate site velocities, offsets due to
earthquakes, and/or rate changes due to transient deformation
from volcanic sources. Yet, implementing any noise model
that represents anything more complex than white noise, or,
normally distributed, Gaussian error, becomes a computa-
tionally inefficient problem in least squares regression since
it involves inverting a large, square data—covariance matrix
with the number of operations that scale with n3, where n
is the number of observations. In many applications, conve-
nience dictates that the covariance matrix becomes diagonal
and standard, weighted least squares is used to estimate the
parameters of interest, for example, the velocity. Then, to
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estimate the standard error in velocity, empirical relation-
ships, such as those found in Mao et al. (1999), are used to
quantify the error. However, this method could provide erro-
neous estimates of both the velocity and its standard error as
it makes several assumptions. If the velocity is computed on
the basis of uncorrelated data, yet the background noise has
strong temporal correlations approaching that of a random
walk, where o = 2, the estimated velocity will be biased.
And, if the background noise spectrum does not conform to
the “rule of thumb” applied to an empirically derived relation,
the standard error in velocity could also be incorrect.

Over the past two decades, a number of papers have out-
lined methods to better estimate the functional parameters
that describe a time series and simultaneously estimate the
components of an assumed model of the background noise.
Most work has revolved around using maximum likelihood
estimators (MLE) to optimize both the fit to the data of the
function that describes the time dependence and the noise
model that describes the data covariance matrix. The ini-
tial work by both Williams et al. (2004) and Langbein and
Johnson (1997) produced similar algorithms with the only
significant difference being the types of functions that could
represent the time dependence of the observations. Later,
Bos et al. (2008, 2013) made improvements on computa-
tional efficiency. Bos et al. (2008) transform the observations
into first differences and note the Toeplitz nature of the
data covariance and implement a fast inversion method to
obtain the inverse covariance. However, this requires that
the time series have no gaps, which is usually not the case
with field measurements. On the other hand, Bos et al. (2013)
present another method that allows for gaps in the time series
but requires the data covariance matrix to approximate a
Toeplitz matrix; this restricts the power-law index, «, to be
<1 but in practice, allows o < 1.6, which excludes random
walk. Recent work by Bos and Fernandes (2015) extends the
Toeplitz approximation to encompass random-walk noise by
using the generalized Gauss—Markov noise model (Langbein
2004) and selecting the Gauss—Markov period longer than the
length of the time series.

In parallel, there are two other methods for quantify-
ing temporal correlation. Amiri-Simkooei et al. (2007) uses
least squares, variance component estimation to determine
the components of a noise model. And, Hackl et al. (2011)
employed Allan variance of rate to determine the appropriate
noise model but noted that MLE provides more robust results.

Langbein (2004) provides more discussion on the vari-
ous forms and implementations of power-law noise, while
Williams (2003) examines the impact of colored or power-
law noise on the estimated uncertainties of rates. For more
discussion of fractional, power-law noise, the reader is
directed to Hosking (1981) and Kasdin (1995). Finally, Lang-
bein (2012) provides some guidance about assessing models
of colored noise obtained from MLE analysis. In particular,
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it is difficult to confidently extract the random-walk con-
tribution due to both the possible presence of flicker noise
and limited length of the time series. Dmitrieva et al. (2015)
present an alternative method, namely a network approach,
to extract the random-walk contribution of noise to the data.

Although the power-law noise models used to quantify the
temporal correlations are important, the research presented
here takes off from Bos et al. (2013) and removes the restric-
tion that the covariance matrix representing power-law noise
conforms to a Toeplitz matrix. The main result of Bos et al.
(2013) is the decomposition of the data covariance into two
parts, one representing the data covariance for a time series
with no gaps and a second representing the correction to the
data covariance for the missing observations.

Instead, I use the decomposition presented by Bos et al.
(2013) and use a different assumption to construct the
underlying noise model, which yields similar computational
efficiency on par with Bos et al. (2013). Previously, if there
were two or more sources for modeled noise, these noise
sources were taken to be independent and added in quadra-
ture. However, I present a method that assumes that a single,
white noise source is filtered such that it represents colored
noise. The filter is constructed by adding various constituents
that comprise colored noise and then uses a simple algorithm
to construct the inverse filter using deconvolution to create
the inverse of the data covariance. Comparison with code
from Langbein (2004) indicates up to a factor of 50 increase
in speed for large, 4000 observation data sets with few data
gaps. This results in a code that runs nearly as fast as that of
Bos et al. (2013).

The following quickly reviews least squares and the role
of the data covariance. The noise model that I propose is
introduced along with the method of Bos et al. (2013) for
working with missing observations. Then, using simulated
data, I make comparisons of various coefficients estimated
using the traditional noise model and the one I propose here.

2 Revised data covariance model

Prior to discussing the revised data covariance, I will quickly
review least squares where a design matrix, A, is constructed
that relates the observations, d, to the parameters, x, which
are estimated by scaling the design matrix to fit the data;
d = Ax + &, where d and & represent the data and their error
that contain (n — m) observations, where m is the number of
missing observations or gaps. The size of Ais (n —m) by
p, where p is the number of unknown parameters in x. To
estimate the value of x using least squares, one calculates:

£ =(A'CTTA)ACd (1)

where C is the data covariance matrix. The data residuals, r
are calculated by:
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F=d— AR (2)

Finally, the logarithm of the Gaussian probability function is:

In(p(r, C))
= —0.5[(}1 — m)In(27) + In(det(C)) + f‘é”f] 3)

The process of maximizing the probability or likelihood is
iterative, which is initialized by assuming a model for the
data covariance, estimating the model parameters, x, using
Eq. (1), computing the misfit to the model, Eq. (2), and eval-
uating the likelihood, Eq. (3). This sequence is known as
maximum likelihood estimation. Equation (3) measures both
the size of the data covariance, det(é ), and the normalized
misfit, #'C~!7. Using a simplex algorithm of Nelder and
Mead (1965), adjustments are made to the parameters that are
used to compute the data covariance until Eq. (3) achieves a
maximum. Note that the model parameters, x, and the residu-
als, 7, are updated for each iteration to minimize the potential
for bias.

In previous work with constructing the data covariance,
the data noise is constructed as a convolution between a filter,
fi and white noise, w;;

n

kei =Y kfioj kw; “

j=i

where index k represents separate error sources. For white
noise, the filter is aé(i) and for random walk, the filter is a
Heaviside function, f; = bh(t). Other filter functions includ-
ing flicker, power-law, and Gauss—Markov processes can be
found in Langbein (2004) and Hosking (1981). To construct
the data covariance, each error source is assumed to be inde-
pendent and they are summed in quadrature,

=124 4 e (5)

where |e might represent the contribution from white noise
and the remaining e are contributions from temporally cor-
related noise. For instance, the data covariance matrix for a
combination of white and random-walk noise with ampli-
tudes a and b, respectively, will look like:

a’ + b? b2 b2 b2
b? a? +2p? 2b2 2b2 ©)
b2 2b> a® + 3b? 3b2

b? 2b? 3b* a?+4p?

To take advantage of partitioning of the covariance matrix
between a time series with no gaps and the gappy parts pro-
posed by Bos et al. (2013), I propose an alternative method,
which I term additive noise, is to construct the data error by
forming the sum

n Kmax

ei=> > kfiojw, @)

j=i k=1

where the final filter is a sum of a series of different filters
and convolved with a single source of white noise; conse-
quently, this composition inserts crosscorrelation between
the constituent filters. For a noise model of white noise
and random-walk noise added, as prescribed by Eq. (7), the
covariance matrix becomes:

a?+b*+2ab b +ab b* +ab b% +ab
br4+ab  a*+2b%>+2ab  2b%+ab 2b% + ab
b* +ab 2% +ab  a*+3b*+2ab  3b*+ab
b* +ab 2b% + ab 302 +ab  a® +4b* + 2ab

®)

where ab is the crosscorrelation between the two filters.
Traditionally, both of these two matrices are inverted using
Cholesky decomposition and this works well with missing
observations. However, in the case of the second, where the
filter function is a summation of several functions, the inverse
of the data covariance is constructed by first, recognizing that
for continuous functions

8ty = f)y* £ )

or the convolution of the filter function with its inverse is the
delta function, or in terms of discrete samples, the inverse
filter is

o 1/f; if i =1;
fit = o[z‘. g -]/f ifi-1 U0
. j=i—1Jj i+1—j 1
But, this operation only works with data having no gaps.
With the assumption of no gaps, the data covariance matrix
is constructed, C = F F! with

fi 0 0 0
o fi 0 O

F=\fs o i O (11)
fa f3 o N

Likewise, the inverse of the data covariance is C~! =
FU'F-L

So far, the above construction of the covariance matrix
assumes that there are no missing data. Yet, typical time series
will have missing observations. Previous work by Langbein
and Johnson (1997), and Williams et al. (2004) have treated
the case of missing data by deleting the rows of F' that corre-
spond to the missing observations. The resulting covariance
matrix, C, is a (n — m) by (n — m) matrix.

However, for the case with gappy data, Bos et al. (2013)
present a method that partitions the inverse covariance matrix
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into two. The first part is the inverse of the covariance of the
data with no gaps, which is rapidly computed using Eq. (10).
The second part provides a correction to the inverse of the
data covariance due to gaps in the data. The correction is:

AC-1F = rllc™ — et MMte My Mt ey (12)
and
In(det(C)) = In(det(C)) + In(det(M'C~' M)) (13)

where the 7 by m matrix M selects the columns in C~! for
which there are missing data. Each column of M consists
of n — 1 zeros and a value of 1 at the row corresponding
to a missing datum in C~'. Consequently, M'C~!' M repre-
sents elements corresponding to missing data. Likewise, rq
is a vector of length n having undefined values at elements
representing missing data and otherwise being the difference
between the observed data and their predicted values. The
second, lengthy term of Eq. (12) has the property of setting
to zero the rows and columns of C~! corresponding to the
missing data in r,, and making a correction to C~! due to
the missing observations. Consequently, the “missing data”
included in r, are nullified when Eq. (12) is evaluated. The
proof of this property is provided in the Appendix of Bos
etal. (2013).

With no missing observations, Eq. (12) can be rapidly
evaluated since C~! is computed from Eq. (10). With a few
missing observations, the size of the second term in Eq. (12)
is small and the inverse of (M'C~!'M) is computed using
Cholesky decomposition along with the rapid computation of
C~1. However, at some point, the number of missing obser-
vations becomes large enough such that the time required
to evaluate the second term of Eq. (12) dominates. In addi-
tion, using the simple sums for representing data error, the
In(det(C)) is simply n In( f7).

The actual implementation of estimating the model param-
eters and the misfits of the model prediction to the data
through Eqs. (1) and (12) is found in the “Appendix.” I found
it more efficient to regroup the numerous matrices represent-
ing the observation equation, covariance, and missing-data
operator by exploiting the ability of simple sums compris-
ing the noise model filter to be convolved with the data and
model equations.

3 Comparison of two covariance models and
inversion algorithms

In this study, the computer program developed by Langbein
(2004) was revised in two ways, first to implement the differ-
ent model of data covariance based upon simple sums rather
than quadrature addition, and second to implement the Bos
et al. (2013) algorithm, Eqgs. (12) and (13), that invert the
data covariance with missing observations. This new ver-
sion, est_noise7.22, not only allows a choice between the
faster option prescribed by Bos et al. (2013) and the stan-
dard method of inverting the data covariance with Cholesky
decomposition, it can also optimize the data covariance based
on the quadrature addition of noise (Langbein 2004) which
is called est_noise6.50. The three modes, 7.22f, 7.22¢, and
7.22n, allowed by est_noise7.22 are compared (Table 1). Fur-
ther comparison is made with software that implements Bos
et al. (2013) found at http://segal.ubi.pt/hector/, which also
has two options: one using inversion of the data covariance
with Cholesky decomposition, HecC, and the second imple-
menting both the covariance adjustment for missing data and
the fast inverter using the properties of the Toeplitz matrix,
Hec.

For comparison, I created several sets of simulated data
each having a noise model consisting of a combination of
white noise and power-law noise added in quadrature (Eq. 5)
although additive noise would work OK, too. I specified the
white noise of 0.7 mm and a power-law noise with an index
and amplitude of 1.5 and 3.0 mm/year!-3/4 [Langbein 2004,
Egs. (9) and (10)]. In addition, each time series have a rate
of zero and no prescribed offsets. Each simulated set starts
with 4000 points of daily samples (10.95 years) with no gaps.
For each simulated set, subsets were created by randomly
removing data simulating gaps randomly spaced within the
original 4000 points. The numbers of missing observations
were specified to be 0, 5, 10, 20 through 50% of the total
4000 points. For all of these subsets, each program was used
to estimate the rate, the amplitude and phase for 2 sinusoids
with periods of 365.25 and 182.625 days, and two offsets.
Simultaneously, the programs estimated the components of
the white and power-law noise and the corresponding stan-
dard errors of the time-dependent model.

The results of the comparison are shown in Figs. 1 through
4. To gather preliminary statistics on the spread of the esti-

Table 1 Comparison of three

MLE algorithms Program est_noise6.50 est_noise7.22 Hector
ID 6.50 7.22n 7.22¢ 7.22f HecC Hec
Data error Quad Quad Additive Additive Quad Quad
Toeplitz approx. No No No No Yes Yes
Inverse routine Cholesky Cholesky Cholesky Bos Cholesky Bos

Note that the Bos inverse routine is Eq. (12)
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Fig. 1 Statistics of time it takes to estimate both the time-dependent
and the noise models from simulations of 10.95years of daily sam-
pled data. CPU times, or the actual times required for the programs to
complete, are plotted as a function of the number of gaps in the data
expressed as percentage with 0% having no gaps. The results from six
programs or their modes are shown. The vertical bars represent the 25—

mated values, the simulations were run 15 times. These tests
were run on a computer with 16 “cores” each running at
2.2 GHz. However, I restricted the operating system to use a
single core. The figures show results of a total of six different
computations.

The time required for each program to complete is shown
in Fig. 1. For a data set with no gaps (0%), the original
program, est_noise6.50 takes just approximately 500 s. In
contrast, the revised program, est_noise7.22 with mode 7.22f,
using both the summed noise (Eq. 7) and inversion of only
the left-hand term of Eq. (12) completed in 5 s, or about a
factor of 100 speed improvement. However, if the C matrix
is inverted using Cholesky decomposition, then mode 7.22¢
takes 300s, or about the same time as the original program,
est_noise6.50. This is not surprising as these two programs
are approximately the same computer code. Between these
two codes, there is some difference in the configuration of the
Nelder and Mead (1965) algorithm. The computation times
for two options of Bos etal. (2013) are also shown. Mode Hec,
which uses a very fast algorithm to invert Toeplitz matrices,
has a 4-s computation time. On the other hand, HecC, which
uses Cholesky decomposition, has a 320-s computation time.

As the number of gaps increases, the computation times
for both mode 7.22f and Hec increase while the computation
times for the remaining programs (and modes) decrease. This
is because both mode 7.22f and Hec need to evaluate the
second term of Eq. (12), while for the other programs or
modes, the number of elements of the C matrix decreases.

(B) 1000 . . . . :

% ¢ D %
iy

ERGREY

1 T T T T T
0 10 20 30 40 50

% gap

75% interval of the observed CPU times; if there is no bar, then the
length of the bar is less than the size of the symbol. In (a), CPU time
is linear but in (b), the ordinate is log(CPU time). Note that for the
statistics representing 7.22f and 7.22c¢ have been offset slightly in the
abscissa for better clarity

The cpu speed for all five programs becomes about equal
between 20 and 25% gaps.

The ability to resolve the power-law index for each
algorithm is shown in Fig. 2a. The underlying index of
1.5 is shown as a dashed line. The estimates cluster into
three groups. The two versions of Hector average to be
1.40. The legacy program est_noise6.50 and mode 7.22n of
est_noise7.22, cluster at 1.45, while modes 7.22f and 7.22¢
average to be 1.53.

Likewise, the estimate of the white noise component from
each program is shown in Fig. 2b. For the codes that rely
upon quadrature addition of the noise, Hector, est_noise6.50,
and est_noise7.22n, they all provide estimates of white noise
to within 0.01 mm of the underlying 0.70 mm. On the other
hand, the programs that use simple addition for modeling
noise yield significantly less apparent white noise. This con-
trast will be discussed later.

The most relevant comparison for crustal deformation
studies is the estimated rate and its standard error using these
algorithms, and those results are shown in Fig. 3. For these
comparisons, I show the differences in estimated rate and
standard error of the five programs and modes relative to the
legacy program, est_noise6.50. In Fig. 3a, the differences
in rates are shown with the estimates from est noise7.22
being nearly identical with est_noise6.50. In contrast, the
estimates from Hector are slightly smaller than those from
est_noise6.50.
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The differences in standard error in rate between those
computed by est_noise6.50 and the other programs are
shown in Fig. 3b. Mode 7.22n, as expected, provides the
same rate uncertainty as the legacy program that it replaces,
est_noise6.50. On the other hand, the computed uncertainty
from Hector and the other two modes of est noise7.22 are
0.04 mm/year larger than those estimated by est_noise6.50
with Hector providing computed uncertainties closer to
est_noise6.50. This represents approximately a 15% differ-
ence from the expected rate uncertainty of 0.27 mm/year.

Along with estimating rate, the ability to estimate off-
sets and their standard errors is also an important factor to
examine; this is shown in Fig. 4. Like the rate comparison
in Fig. 3, the offset statistics are the differences relative to
est_noise6.50. Given that the simulated data had 0.01 mm
resolution, the differences shown for offsets are at the same
resolution as the simulated data and are 2% of the expected
offset uncertainty of 0.50 mm; the offset estimates are inde-
pendent of the underlying method for construction of the data
covariance.

Both Figs. 3 and 4 show the differences in estimated rates
and offsets relative to the legacy program. Not shown are
the actual values of rate, offset, and standard errors. For the
simulations, all had prescribed zero for the rate and offset.
Yet, all of the MLE codes estimated a nonzero rate and offset,
but when compared to the standard error of each, none would
be statistically significant. Importantly, although there was
variability of the values of rate and offsets estimated by each
of the simulations, the differences between the estimates of
rate and offset were small calculated by each program.

4 Discussion

With the combination of reformulating the construction of
the data error model from quadrature addition to simple addi-
tion of filters and reformulating the inverse of the covariance
matrix provided by Bos et al. (2013), the algorithm dis-
cussed here has nearly the same computational speed as that
implemented by Bos et al. (2013), and, importantly, has no
restriction on power-law index. The key improvement over
Bos et al. (2013) is the reformulation of the data error in
terms of simple addition rather than quadrature addition.
Figures 1, 2a, and 3 in this report essentially reproduce
Figs. 2 through 5 in Bos et al. (2013). One difference, which
applies to Fig. 1, is that they compared their algorithm to the
CATS program of Williams (2008). For comparison of speed
of computation, Bos et al. (2013) show that the speed of Hec
is roughly equivalent to CATS when the number of gaps in
the time series is approximately 50%. I believe that this may
not be a valid comparison since CATS may have not been
optimized for speed; both versions of est_noise and Hector
have been optimized. Perhaps more valid is a comparison
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Fig. 2 Estimate of power-law index and white noise component from
the six versions of maximum likelihood codes that estimate the optimal
power-law noise representing the simulations in Fig. 1. All 15 simula-
tions used power-law noise with an index of 1.5 and 0.7 mm white noise
added in quadrature. In (a), the estimates of power-law index are shown,
while in (b), the estimates of the white noise amplitude are shown. The
vertical bars represent the 25-75% interval of either the index or white
noise estimate. The dashed, horizontal line represents the simulated
value with noise added in quadrature

of the two modes of both est_noise7.22 and Hector. In con-
trast to the 50% value, the results shown in Fig. 1 show near
equivalence in speed when the number of gaps is between 20
and 25% for both modes of Hector, with one using Cholesky
decomposition similar to CATS and the second mode using
the covariance decomposition and fast Toeplitz solver.

CPU speed for all of these programs scales with the num-
ber of data, n, and the number of gaps, m, where n is taken
to be number of data constituting the time series without
gaps. For standard Cholesky decomposition used in modes
7.22¢,7.22n and HecC, CPU time scales approximately with
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Fig. 3 Statistics of estimating rate and its uncertainty using three
modes of est_noise7.22 and two modes of Hector compared with the
legacy est_noise6.50. The ordinate is the difference between the five
estimates and that from est_noise6.50. In (a), the difference in esti-
mated rate is shown while in (b), the difference in the standard error in
rate is shown. The vertical bars represent the 25-75 % interval of either
the estimate of the rate or its standard error

(n — m)3. Empirical tests suggest that the exponent ranges
between 2.6 and 2.8.

On the other hand, the CPU scaling with using the Bos
et al. (2013) reformulation of the data covariance is com-
prised of two components, one relating to the size of the
covariance with no gaps and the other relating to the number
of missing data. For the first part, CPU speed scales in n”
for both mode Hec, using the fast Toeplitz solver and 7.22f
using the combination of deconvolution of the data noise,
Eq. (9), and convolution of the filter with the data and model,
Eq. (21). For the second component which involves both the
n and m and for which Cholesky decomposition is required,
CPU speed scales approximately as n“ x m*, where both «

difference in offset
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Fig. 4 Statistics of estimating offset and its uncertainty using three
modes of est_noise7.22 and two modes of Hector compared with the
legacy est_noise6.50. The ordinate is the difference between the five
estimates and that from est_noise6.50. In (a), the difference in estimated
offset is shown while in (b), the difference in the standard error in offset
is shown. The vertical bars represent the 25—75 % interval of either the
estimate of the offset or its standard error; if there is no bar, then the
length of the bar is less than the size of the symbol

and A differ between the two algorithms. For Hec, the scal-
ing is n' x m!>, and for 7.22f, the scaling is n'® x m1 2;
these scaling relatlons are based upon fitting n“ x m” to a
series of simulations with n between 1000 and 5000, and the
percentage of gaps between 5 and 50% for both programs.
The payoff of using the faster algorithms comes with ana-
lyzing data from large GNSS networks. For instance, the US
Geological Survey monitors the displacements of many sites
in the western US. For one network consisting of 180 sites
spanning the San Francisco Bay area, the empirical relations
derived from the limited speed tests using simulated data
suggest that the algorithm that uses only Cholesky decom-
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position to invert the covariance matrix, 7.22c¢ requires 37
hours. In contrast, using 7.22f, requires 4.5 hours, or a factor
of 8 speed-up. For this network, the median percentage of
gaps is 2.2% with a 9.1 year median length.

For a prescribed noise model that is a mix between white
noise and power-law noise, the estimates of these parame-
ters will be slightly different depending upon whether the
noise model is built in quadrature or as simple sums. This
difference is illustrated in Fig. 5, but can be seen in the
difference between the two example covariance matrices,
equations 6 and 8. The transformation between the two
covariance matrices is the addition of the crossterm ab where
a is the amplitude of white noise and b is the amplitude of
power-law noise. To construct the spectrum for quadrature
addition of noise, shown in red in Fig. 5, it is simply a sum
of Ppi/f" and Pyn, where Py /f" is related to the power-law
amplitude, b, (Langbein 2004, Eq. 11), and Py, = a? / fay
with f,y being the Nyquist frequency.

However, computing the equivalent spectrum for noise
constructed with simple addition of their underlying func-
tions is difficult. The most expedient way to construct the
spectrum is to employ a discrete Fourier transform (DFT) of
summed filter function, Eq. (7). The results of this calcula-
tion, using the same parameters as those in red, are shown
in blue. The differences between these two types of noise
models can be most significant at the higher frequencies that
represent the white noise component. Both of these noise
models used 0.7 mm of white noise; yet, summed noise yields
approximately 2 db more power than noise added in quadra-
ture. Again, the root cause is the introduction of crossterms
in the covariance matrix for simple sums.

In part, the scaling, especially for the white noise com-
ponent between two methods of construction of the noise,
explains the apparent difference in the white noise estimated
that is shown in Fig. 2b. For the programs that construct
the data covariance using quadrature addition, the estimated
white noise averages to 0.69 mm within 0.01 mm of the sim-
ulated noise. However, the white noise amplitude averages
to be 0.56 mm for the programs that use simple sums to con-
struct the noise. However, since the diagonal terms of the data
covariance for the simple sums are a factor of 2ab greater
than that constructed with quadrature addition, I estimate the
effective white noise to average 0.67 mm, or close to simu-
lated white noise. In detail, to calculate the effective white
noise requires computing the PSD using a DFT described
below.

Reconciliation between the two methods of constructing
the noise model is shown in Fig. 6. Here, from each simula-
tion and its corresponding estimate of noise parameters, an
equivalent power spectral density (PSD) is computed. For the
noise parameters that use quadrature addition, the equivalent
spectrum is Pyh + Pp1/f. However, to find the equivalent
PSD for the noise parameters obtained with the assumption
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Fig. 5 Underlying power spectra for a noise model consisting of power
law and white noise. The power law has an index of 1.5 and an amplitude
of 3mm/year®37> and the white noise is 0.7 mm. Plotted in red is the
spectrum when these two components are added in quadrature. Blue
is the spectrum when the two components are from simple addition of
their filters using the same values as used for quadrature addition. The
difference between the two is shown in black with its ordinate scale
shown on the right-hand side. The simulation discussed in the text uses
quadrature addition

that noise is additive, a DFT is used. Since 15 simulations of
noise were used, the PSDs shown in Fig. 6 are the median
spectra from each mode, 7.22n and 7.22f. In spite of large,
apparent spread in the estimates of the white noise parameter,
Fig. 2b, the spectra representing the two modes of computing
data covariance are nearly equivalent.

The comparison of the two PSDs in Fig. 6 shows some
divergence at the low frequencies, with the mode that uses
additive noise having slightly more power. This is reflected in
the estimates of standard error for rate, where those standard
errors are larger when the covariance is constructed from
additive noise. However, as mentioned previously, the differ-
ences are slight, at 10%.

Fundamentally, the choice is arbitrary whether to use noise
added in quadrature or by simple addition of filter func-
tions. Essentially, either approach, as shown in Figs. 3 and 4,
yields similar estimates of the model that describes the time
dependence of the data. The chief difference is the poten-
tial for rapid computation simultaneously of both the noise-
and time-dependent models provided by simple addition with
the potential for misinterpretation of the white noise ampli-
tude. Instead, the white noise amplitude provided directly
from the additive noise model needs to added to the high-
frequency portion of the temporal covariance spectra through
the DFT.
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Fig. 6 Comparisons of the power spectral densities from the sim-
ulations derived from noise estimates from modes 7.22n and 7.22f.
Plotted in red is the spectrum derived from 7.22n where data covari-
ance assumed that the noise is added in quadrature. Plotted in blue is
the spectrum derived from 7.22f, where data covariance assumed that
the noise is from simple addition. The difference between the two is
shown in black, with its ordinate scale shown on the right-hand side.

Near equivalence is achieved since the white noise amplitude from 7.22f

averages 0.56 mm and the white noise from 7.22n averages 0.69 mm

Although both this work and the work of Bos et al. (2013)
using maximum likelihood methods provide improved effi-
ciencies working with long time series, one needs to be
judicious using these algorithms over other techniques. For
instance, over the past decade, it is now common to work with
GNSS data sampled at 1 sample per second (sps) rather than
daily estimates of position. This represents almost a factor
of 10° more data and, for est_noise7.22, the number of data
could overwhelm both the array dimensions and computer
memory. Consequently, standard power spectral techniques
that revolve around DFT, windowing, and averaging should
be considered and employed.

For example, with high-rate GNSS data, most of the data
will only record background noise which has significant tem-
poral correlations (Langbein and Bock 2004; Genrich and
Bock 2006). From those records, the power spectrum can
be estimated, then generalized by either graphically fitting a
power-law and white noise function to the spectrum or using
a more sophisticated, but unspecified method. That noise
model, with aid of scaling provided by Langbein (2008),
Eq. (11), can be used as an input to est_noise7.22 on an
interval of high-rate data that exhibits transient deformation
for which there is a standard function that could represent
the size of the transient. This is a very fast calculation as the
noise model is known and is held fixed.

5 Conclusions

The new algorithm that merges a different method of mod-
eling temporal correlation in data and the Bos et al. (2013)
method of partitioning the data covariance matrix provides
a rapid computation estimating both the parameters that
describe a time-dependent function that underlies the data
and the data error that can provide realistic estimates of
the uncertainties of the parameters of the time dependent
function. Bos et al. (2013) describe an approximation of
the data covariance, that is a Toeplitz matrix, which allows
for rapid inversion of the large data covariance. However,
that approximation can be restrictive and contrary to data
which have large temporal covariance, in particular any data
that have a power-law index >1.6, which includes random
walk. Further extension of the approximation uses general-
ized Gauss—Markov noise to allow the power-law index to
exceed 1.6.

That approximation is eliminated by making a different
assumption with respect to how the data noise is constructed.
Rather than noise being constructed from independent noise
sources, the noise is constructed from a single source and con-
volved with a complex filter that can comprise white, power-
law, and/or bandpass-filtered components. Consequently,
this results in a rapid method of inverting the data covari-
ance matrix reducing an > calculation to an n? calculation.

For the simulations discussed here, where the power-law
index was taken to be 1.5, both methods provide equivalent
results.
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Appendix 1: More efficient algorithm

The efficiency of evaluating the Bos et al. (2013), Eq. (7)
can be improved by not directly computing C ! for the case
where the covariance is constructed by simple sums. Instead,
using convolution yields up to a factor of 5 increase in com-
putation speed when there are no missing data. Starting with
the covariance adjustment portion of Eq. (12),

Ca—d; =c'—c'mwmtc'my"'mic™! (14)
this can be plugged into

¥ =[A'Coy Al A'Cryid (15)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

994

J. Langbein

where A is the observation matrix with n rows with zeros
substituted at times of missing observations. Likewise, d is
an n length data vector with zeros at times of missing data.

Furthermore, the function, f -1 Eq. (9), can be consid-
ered as a filter, which if chosen correctly, and convolved
with the data, will whiten those data; d(¢) * f =1 That is,
rather than d(¢) having a power-law power spectrum, the
convolved spectrum becomes “flat” or frequency indepen-
dent representing white noise. The matrix F~! comprising
£~ will be identified for convenience as W, or

cl'=ww (16)

Both Eqgs. (14) and (16) can be plugged into Eq. (15). Using
the following substitutions to regroup the terms;

dy = Wd (17)
Ay = WA (18)

this will “whiten” both the data and the observation matrix.
In addition, the filter on the missing data is formed by

E=WM (19)

Recall that the matrix multiplication using M is simply
selecting the columns in W representing missing observa-
tions.

Making the above substitutions yields

X =[AYAy — ALE(E'E) 'E A, ]!
[AL, — ALE(E'E)"'EYd,, (20)

And, substituting B = E(E'E) " E' yields

X =[AL Ay, — AL BA]T[AY — AL Bldy (21)

Using Eq. (21) rather than the combination of Eqgs. (14)
and (15) provides some computational efficiency using con-
volution and BLAS computer programs to compute A', Ay.
One gets roughly a factor of five speed-up in the case where
there are no missing observations. Once the number of miss-
ing observations becomes significant, the computation of
both B and its surrounding terms that involve A,, becomes
significant, but no worse than the calculation involving both
Egs. (14) and (15).

Appendix 2: Source code
A copy of the source code and other documentation can be

found at http://earthquake.usgs.gov/research/software/#est_
noise.
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