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1. Introduction

The program est noise7.2x does time-series analysis to extract trends (velocities),
offsets, and other functions from GNSS observations and simultaneously estimate the
parameters the characterize the background noise of the data. Basically, it does least-
squares regression, but importantly, it quantifies the temporal correlations of the
data to provide unbiased estimates of the parameters and their statistical errors that
model the time dependences of the observations. Standard least-squares regression
typically assumes that each observation is independent, and drawn from a Gaussian
distribution. However, for many time-series, the data are temporally correlated.
est noise7.2x simultaneously ”measures” the temporal correlations and estimates
the usual parameters that one often seeks from a time series. The optimization is
measured using the maximum likelihood estimator. Although this code was written
primarily for GNSS observations of positions, it can be applied to other time series,
too.

est noise7.2x is an update of my older program, est noise6.50. There are several
improvements:

(1) It provides a mechanism to analyze large data sets rapidly. For data with no
gaps in the time series, the speed-up can be up to a factor of 50. Typically,
for many GPS time series, which have a few gaps, the speed-up is about a
factor of 8.

(2) It can take a variety of time formats including modified julian day and GMT
style formats

(3) The data and ancillary matrices are now double precision which minimizes
apparent singularities in the inversion of data covariance matrices having
large temporal correlations.

Date: December 2015.
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(4) Since the input or configuration to this program is a series of answers to
questions, the program provides a journal file of the responses. One can edit
and then reuse the journal file.

(5) All subroutines are public domain. The legacy est noise6.50 used some sub-
routines from Numerical Recipes, Press et al.. Those included a Fourier
Transform, and the Nelder and Mead (1965), Downhill simplex optimization
codes. I have written my own version of Nelder and Mead and used the public
domain FFT from netlib.org

(6) The same set of inputs for est noise6.50 can be used with est noise7.2x which
yields the same results; that is est noise7.2x is backwards compatible with
est noise6.50.

The development and discussion of est noise can be found in the references.

1.1. Time dependent models. The following types of time dependence are in-
cluded with est noise; rate, changes in rate, offsets, sinusoids, exponential, 1− e−t/τ ,
and Omori decay, log(1 + t/τ). In addition, more functions can be added. For in-
stance, some observations of interest, such a borehole strainmeter data, one might
include the dependence of another set of observations such as atmospheric pressure.
The pressure data can be used as another time-dependent function and the program
finds the admittance (or gain) of the pressure upon the strain data. Specifying these
functions is done by answering questions that the program asks. You will need to
know the times of the offsets, the time of the start of the exponential trend, and the
period of time spanning the rate change. More information will be provided later in
the manual.

1.2. Noise models for temporal correlations. The temporal correlations can be
modeled in terms of a power spectra, P (f), where f is frequency. est noise has a
library of a few, simple noise models which can replicate a variety of temporal cor-
relations. These include, white noise, where P (f) = σ2/fny where fny is the Nyquist
frequency and σ is the amplitude of white noise. This is represents, uncorrelated
observations, and that the data are Normally distributed with a standard deviation
of σ.

However, most data sets have temporal correlations that can be represented by
a power-law power-spectrum, P (f) = Po/f

β. If β = 1, then this is termed flicker
noise, and if β = 2, then this is termed random-walk noise.

In addition, Langbein (2004) provided two more types of noise; generalized Gauss-
Markov and bandpass filtered noise. Generalized Gauss Markov noise can be repre-
sented by

(1) P (f) =
Po

[f 2 + (α/2π)2]β/2
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where the power spectra is frequency independent at the lowest frequencies, but
becomes a power law when f > α/2π. (Note: this corrects equation 15 in Langbein
(2004)).

For band pass filtered noise, it is represented by:

(2) P (f) = σbp
2[

(f/fh)
2

(1 + (f/fl)2)(1 + (f/fh)2)
]2p

where fl and fh are the high and low frequency limits of the filter and p is the number
of poles.

All of these noise sources can be added together to provide a more complex and
realistic representation of the temporal correlations. As Langbein (2016) demon-
strates, there are two different ways to add these noise sources and that can impact
the computational requirements. It customary to assume that each noise source is
independent and add them in quadrature, which has been done with the legacy pro-
gram est noise6.50 and is offered as one option in est noise7.2x. Alternatively, each
of these noise models is represented by a time-domain equivalent, or filter functions.
These filters can be added together to form the covariance matrix. Computationally,
this offers some advantages for which the other mode of est noise7.2x uses.

1.3. Related programs. The tar-ball contains several other programs that aug-
ment est noise which can help test the code and/or help evaluate the results.

bust 5: This removes outliers from time series based upon a running median
compare wander7: Computes a spectrum of wander or drift based upon Ag-

new [1992]. This is useful to assess the quality of the estimated noise model
obtained from est noise. I believe this is also related to the method that
Hackl et al. (2011) uses to estimate the noise model.

psd calc7: Computes the equivalent power spectral density using the noise
model consist with est noise. This involves re-scaling the coefficients.

gen noise7: This program generates a time series of simulated, colored noise
using the noise models discussed above.

adjust 1: removes sinusoids, offset, rate, changes in rate, and exponential/Omori
decay when given their specified amplitudes. This is used in companion with
bust 5.

In the example0 directory, I provide 3 scripts that combine the use of all of these
programs to remove outliers and to perform the time series analysis to extract trends
and the background noise of the data.

Finally, Bos et al. (2012) provides an alternative to est noise and that code can
be found at
http://segal.ubi.pt/hector/

est noise primary advantage is that it has no approximations. For power-law noise
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with indices greater than 1, hector makes an approximation to force the covari-
ance matrix to be Toeplitz and uses a fast Toeplitz solver to invert the covariance.
est noise, when using the simple addition of filter functions provides similar compu-
tational speed to hector without the approximation. In reality, for hector, approxi-
mation is relatively minor.

2. Compiling the program

The program is written in Fortran, primarily the legacy Fortran 77. Unlike the
legacy est noise6.50, I’m not able to provide an executable file. Instead, you will need
to compile the program and its subroutines. I’ve successfully compiled the program
on Mac OS and Linux OS, using both gfortran and the Intel Fortran compilers. I have
not tried compiling and running the program on Windows OS. The best performance
comes with the Intel compiler and its MKL libraries. By using gfortran and the
associated openblas library, the computation speed is reduced by approximately 30%.
For Linux and gfortran, you may need to download the openblas library.

I have provided a compile script; to invoke,
./compile.sh

For which:
Script used to compile est noise

Usage: compile.sh mac/linux i/g

where argument one designates the OS, mac or linux

and argument two designates the compiler

i intel ifort

g gfortran

For compiling on a Mac, you will need Apple’s Xcode installed; I think you get
this at Apple’s online ”App” store. With the Intel option, i, this requires Intel
Fortran and their Math Kernal Library. Otherwise, you’ll need gfortran which can
be obtained at http://hpc.sourceforge.net/

For compiling on Linux either Intel Fortran or gfortran will work. If the Intel
compiler with MKL is not available, then gfortran is easily obtainable (if not already
installed). Depending on the Linux distribution, a package installer, such as yum,
will install gfortran.

In addition, if your are using gfortran on linux, the openblas library needs to be
installed either in /usr/lib or /usr/lib64 and the listing will look like:
ls -lt /usr/lib/*openblas*

lrwxrwxrwx 1 root root 22 Jan 28 2015 /usr/lib/libopenblas.so.0 -> libopenblas-r0.2.11.so

-rwxr-xr-x 1 root root 15134496 Aug 24 2014 /usr/lib/libopenblas-r0.2.11.so

If not present, you can simply download the openblas libraries using a package in-
staller such as yum, that is sudo yum install openblas, which is used with the
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CentOS dialect of Linux. IN ADDITION, you will need to comment-out one of two
lines in compile.sh script near line 40

3. Initial test

An example is included with the distribution. Critically, it contains the seed file,
seed.dat, the data canp.e, and the input driver file, est canp.in. These are found
in the example directory. To run,
../bin/est noise7.22 < est canp.in

On a single core, 64 bit Linux computer running 2.2GHz, the program take 48 seconds
when compiled with the Intel Fortran and 68 seconds with gfortran.

Although the program can run over multiple cores, I find that it is most efficient
to use a single core. That is, if you are analyzing several time series, one should
assign a single process of est noise to run on a single core processing a single time
series. That way, if you have 8 core available, one can be simultaneously analyzing 8
different time series. However, one needs to create a directory structure for each time
series. The Linux utility, taskset, assigns a process to specific cores. For example,
taskset -c 0 est noise7.22 < est canp.in

assigns the process to the first core. Unfortunately, this utility is not available on
Macs.

The input file, est canp.in, contains some annotations about the meaning of each
line. You can compare the standard out (aka screen dump) with est canp.out. The
most critical information is found at the tail end of the output which includes the
estimate of rates, offset, log-trends, sinusoids, and the noise model. More information
is contained in the following sections.

4. Input files

At the minimum, est noise requires two input files, one seed.dat, which is a
single integer number to act as a seed to a random number generator, and a file of
data. When the program is run, it will start asking questions on the standard output
and responses are required to be typed into the standard input. Your answers are
recorded in a journal file which you can re-use after changing its name. This section is
broken into two parts, the first part discusses formats, in particular for the data and
specifying time, and the second part documents the questions and answers required
by est noise

4.1. Data formats. est noise handles five different formats for time. Within the
program, the basic unit is day. The time formats are specified by:

• otr Time is specified as year, and day of year ranging from 1 to 365 (or 366
for leap year). Finer resolution is specified as fraction of a day. For instance,
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1515 and 10 seconds on 1, December 2015 is 2015 335.635532407. These
are read and stored as double precision values.

• otd Time is specified as year, month, and day of month. Month is a number
from 1 to 12. For 1515 and 10 seconds on 1, December 2015, it is specified
as 20151201.635532407

• otx Time is specified as year, month, and day of month. Month is a number
from 1 to 12. For 1515 and 10 seconds on 1, December 2015, it is specified
as 2015 12 1.635532407

• gmt This uses the time format consistent with the GMT plotting package,
www.soest.hawaii.edu/gmt/. Therefore, 1515 and 10 seconds on 1, December
2015, it is specified as 2015-12-01T15:15:10.0

• mjd Time is specified as modified Julian day; Therefore, 1515 and 10 seconds
on 1, December 2015, it is specified as 57357.635532407. Day zero is 17,
November, 1858.

The time series of data requires a time stamp, using one of 5 formats, the ob-
servation, followed by its ”error”. Actually, that last column, although required by
the read statement, is not used. Some thought is needed with regards to the data-
value. Although the program is written for double precision, the Fortran format
statements provide limited resolution. For instance, if the actual scale of the vari-
ations in the observations are a few millimeters, I suggest that the observations be
scaled to millimeters and not meters.

4.2. est noise questions and responses. The question/answers are generally
grouped into two parts, one that specifies the components of the time-dependent
functions and the second part that specifies the components of the noise model. The
time dependent model is the summation of a rate, changes in rate, offsets, sinusoids,
exponentials, 1 − e−t/τ , logarithmic trends, log(1 + t/τ), and auxiliary functions or
data, a(t).

Format of input: Provide the format of dates used to specify the limits of the
data and the time dependent model; use one of the five abbreviations listed
in Data formats.

Number of time series: This will usually be 1, but is special cases, such as
legacy electronic distance meter data where near simultaneous measurements
were made to neighboring monuments, this value could be greater than 1.
This option adds additional columns in the design matrix having either 0 or
1 depending upon whether the measurement was made to monument 1 or 2...

Time interval: Specify the time interval to analyze the data. Initial date
followed by ending date. The dates must be consistent with the date format
descriptor specified in the first answer. It is possible that your data set spans
a longer time interval than you wish to analyze. The input provides a means
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to limit the interval for analysis. In addition, the start time has a special
meaning as it provides the reference time. For instance, when fitting a
secular trend to data, di = B + R(ti − t0), the nominal value B represents
the estimate of d at the start time, t0.

Secular rate, y/n: Estimate the secular rate, yes or no. That is, estimate R
in di = B +R(ti − t0). If n, then R = 0.

Number of rate changes: Normally 0, but if a rate change is specified, then
the number of rate changes is specified. Following this entry, if not equal to
0, are n lines that specify each interval of the rate change, both the start
and end date of the change using the same time format entered above. Each
rate change interval must be within the specified interval of the data given in
Time interval. The kth rate change, rk over the interval tk1 to tk2 is:

(3)

di = B +R(ti − t0) for ti < tk1

= B +R(ti − t0) + rk(ti − tk1) for tk1 ≤ ti ≤ tk2

= B +R(ti − t0) + rk(tk2 − tk1) for ti > tk2

None of the time intervals for the rate changes should fall outside the limits
specified in Time interval discussed above.

Number of sinusoids: Input the number of sinusoids. If the number is more
than 0, then list the period of each sinusoid in days. The kth sinusoid is the
sum of the sine and cosine;

(4) di = B +R(ti − t0) + Ck cos(2π(ti − t0)/pk) + Sk sin(2π(ti − t0)/pk)

where pk is the period of the kth sinusoid with amplitudes Ck and Sk. Likewise,
t0 is the start time

Number of offsets: The number of offsets is specified. If not 0, then the time
of each offset is listed. The offset is modeled as a Heaviside or unit step with
the first value of the step corresponding to the time specified of the offset.

Number of exponential and/or log functions: Many time series have ex-
ponential or logarithmic trends. This option allows one to estimate the am-
plitude, and if desired, the time constant for each of these trends. If the
number is not 0, then for each of the kth trends require:

Time of start of trend: Input the initial date of the trend, tT , using
format entered previously

Time constant and either fix/float: This is two entries, the value of
the time constant in years and whether you want est noise to estimate
the time constant, float or hold the time constant fix’ed. If float then
the entered time constant is a guess and the program uses the Nelder
and Mead (1965) algorithm to find the optimal time constant assuming
the current guess at the values of the data covariance.
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Type of trend, exponential or logarithmic: Enter e for exponential,
Ae−(ti−tT )/τ , or m for logarithmic or Omori’s law, Alog(1 + (ti − tT )/τ)

Specify the date format of the data: The date format of the data may be
different than the format of the dates the specify the time dependence. See
above for acceptable formats.

Name of Data file: Provide the name of the data file. See above for accept-
able formats.

Specify then number of auxiliary data files: Usually, this will be 0. How-
ever, for some data sets, such as borehole strainmeter data, this will be re-
quired as atmospheric pressure data is used to adjust the raw strain data.
One can enter other functions which might impact the observations. The
time dependent function is set-up as:

(5) di = B +R(ti − t0) + ...Ak(ak,i−j) + ...

where Ak is the gain or sensitivity of the kth function (or data-channel) made
up of ak,i−j i observations with a lag (in time) of j. If the number of auxiliary
data is not 0, then the following entries are required;

Format of data: Use one of the abbreviations listed under data formats.
Name of Data file: Provide the name of the data file; Again, each record

of data must have time, the data value, and value for error, which is not
used.

Lead/Lag time: Usually 0 but can take on other values. It must be
integer multiples of the data sample interval given units of days.

The program will match the ak,i−j with the corresponding data, di. If one
of the pair is missing, then that line in the design matrix relating to the
observation/data is deleted.

Sampling interval: The nominal sampling interval, in days of the data.
Type of error model: Acceptable values are n, a, f, or c. See discussion

in the introduction, but usually this will either be n, or a. With n, the
components of the noise model are added in quadrature consistent with the
legacy est noise6.50. With the other three, filter functions of the noise model
are simply added. For data sets with few gaps or missing data, the program
runs most efficiently taking advantage of the algorithm discussed by Langbein
(2016) option f should be selected. For gappy data, Cholesky decomposition
is employed and option c should be selected. By using option a, the program
automatically selects between the fast or Cholesky algorithms; if there are
more than 25% missing data, the program defaults to Cholesky decomposition
to invert the data covariance matrix.

Substitute synthetic noise for data: This will be typically n or no. If y,
the program will ask a set of questions that specify the parameters of a noise



MANUAL FOR EST NOISE7.2X 9

model. Synthetic data are created with the same sampling interval as the
data, then at time when data are missing, the synthetic data are deleted.
Note that this option has not been tested with the current version
of est noise7.2x but had been used extensively in the past. Use
with caution!

Decimation type: Typically, this will be 0, but one can put anything between
0 and 3. With 0, all measurements are used. Otherwise, the data will be
decimated using the following, ad-hoc schedule:

1: Keep two observations, delete the third, keep two, delete the third; uses
2/3 of the available data.

2: Keep two observations, delete the next two, keep two, delete two; uses
1/2 of the available data.

3: Keep two observations, delete the next three, keep two, delete three;
uses 2/5 of the available data.

If Type of error model is anything by n, the decimation type defaults to 0, or
no decimation.

White noise amplitude: Set-up the parameters to model the white noise
component. Two entries are required with the first being a guess at the value
of the white noise and the second being float or fix. If float, the program
will find the optimal value of white noise that maximizes the log-likelihood.
If fix, the program holds the value of white noise fixed.

Amplitude of first power law noise model: Set-up the amplitude for the
first power law/Gauss Markov noise model. Two entries are required with the
first being a guess at the value of the amplitude of power law and the second
being float or fix. If float, the program will find the optimal value of the
amplitude of power-law noise that maximizes the log-likelihood. If fix, the
program holds the amplitude of power-law noise fixed. Note that the unit of
the amplitude is unit/yrβ/4

Index of first power law noise model: Continuation of the set-up of the
first power-law/Gauss Markov noise model. Two entries are required with
the first being a guess at the of power law index and the second being float

or fix. If float, the program will find the optimal value of the index of
power-law noise that maximizes the log-likelihood. If fix, the program holds
the index of power-law noise fixed. If the index, β = 1, then this is considered
as flicker noise and if β = 2, then this is considered as random-walk noise.
See equation 1.

Gauss Markov frequency: Continuation of the set-up of the first power-
law/Gauss Markov noise model. Two entries are required with the first being
a guess at the α/2π frequency and the second being float or fix. If float,
the program will find the optimal value G-M frequency that maximizes the
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log-likelihood. If fix, the program holds the G-M frequency fixed. See equa-
tion 1. In most cases, your entry will be 0 fix. Note that the unit of α is
radians/year.

Bandpass filter limits: Pass-band for band-pass filtered noise model in units
of cycles/year. Two numbers are required. For typical seasonal noise, use
0.5 2.0. See equation 2.

Number of poles for bandpass filtered noise: A integer value between 1

and 4 needs to be entered. See equation 2.
Amplitude of bandpass filtered noise: Two entries are required with the

first being a guess at the value of the amplitude of bandpass filtered noise and
the second being float or fix. If float, the program will find the optimal
value of the amplitude that maximizes the log-likelihood. If fix, the program
holds the amplitude fixed. If bandpass filtered noise is not considered, enter
0 fix.

Index of second power law noise model: Set-up of the second power-law
noise model. Two entries are required with the first being a guess at the of
power law index and the second being float or fix. If float, the program
will find the optimal value of the index of power-law noise that maximizes
the log-likelihood. If fix, the program holds the index of power-law noise
fixed. If the index, β = 1, then this is considered as flicker noise and if β = 2,
then this is considered as random-walk noise.

Amplitude of second power law noise model: Continuation of the set-up
the second power law noise model. Two entries are required with the first
being a guess at the value of the amplitude of power law and the second
being float or fix. If float, the program will find the optimal value of the
amplitude of power-law noise that maximizes the log-likelihood. If fix, the
program holds the amplitude of power-law noise fixed. Note that the unit of
the amplitude is unit/yrβ/4

Add white noise to data: Usually, this will be 0. In some rare cases where
the data are characterized by extreme power-law noise with no detectable
white noise, one may need to add white noise to the observations to keep the
inversion of the data covariance becoming numerically singular.

Although this is a long list of inputs, the program supplies descriptive queries.
The answers supplied to the queries are preserved into a journal file call estin.jrn.
Note; one may need to delete extra lines following the line specifying the name of
the data file(s).
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5. Output

The program provides several outputs, with the standard out being the most in-
formative. Often, especially when running the program in batch mode, one should
direct the standard output to a file. An example is shown in the ./example directory
where est noise was run as
../bin/est noise7.22 < est canp.in > est canp.out

In addition to the standard output are resid.out and covar.out which augments
the information presented by the standard output. Specifically, each line in resid.out

is the time, the difference between the observed and predicted observation, the pre-
dicted value from the model, and the observation. covar.out provides the covariance
between the parameters of the time-dependent model and, secondly, their cross cor-
relations. For trouble-shooting, a file, tauexp.out is provided showing the estimates
of time-constants if the program is required to estimate these terms for either an
exponential or logarithmic trend.

The standard output is divided roughly into four sections: Some statistics of the
sampling of the data; The estimates of the parameters of the time-dependent model
assuming that the data are temporally independent, Gaussian distributed ; A sequence
of trials of noise parameters as the program iterates to an optimal value of log-
likelihood; And finally a section listing the estimates of the parameters of the time-
dependent model and the accompanying model for noise.

The various statistics compiled from the raw data include the number of points, the
statistics of the data sampling, the number of missing data, and an estimate of the
white noise component made by taking the differences between adjacent observations.

The program then assumes that the data covariance is a diagonal matrix and
carries out the least-squares analysis to estimate the size of each parameter and its
standard error. The standard error is rescaled based upon the standard deviation of
the fit of the model to the data, assuming a diagonal covariance matrix. (Presumably,
these would be the values you would get by plugging the data and the design matrix
into spreadsheet).

The bulk of the standard output shows the values of each trial noise model and its
corresponding likelihood. If the time-constant of either an exponential or log-function
is being estimated, it is shown, too.

Once the program maximizes the likelihood, the estimates of the parameters of
time-dependent model and their standard errors are shown (they are recomputed
at each iteration of noise modeling). The program attempts to also estimate the
uncertainty of the parameters of the noise model by examining the curvature of the
log-likelihood function during the optimization. I don’t believe these results; they
look too small.
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Along with the value of the logarithm of the likelihood, MLE, both AIC and
BIC, Akaike/Bayesian Information Criteron which both factor in the total degree of
freedom from both the time-dependent and the noise modeling.

6. Known problems

The source program time.f is written by me a long time ago prior to the internet.
I keep updating the code to include the current, and future dates, but I think the
current version is limited to time before 2020.

As noted above, the estimates of the standard errors for the parameters of the
noise model are probably too small.

The program has been extensively tested and run using the otr format. Recently,
I did some testing with the gmt format. I wouldn’t be surprised to find bugs with
the other time-formats.

7. Companion Programs

As mentioned briefly in section 1.3, the est noise package includes five other pro-
grams to either generate temporally correlated noise, gen noise, remove outliers, bust
in conjunction with adjust, and evaluate the results, compare wander and psd calc.
All of these are fortran programs that the user provides answers to the list of ques-
tions from each program. Since gen noise has a number of questions, a journal file is
created. With the exception of compare wander, the documentation provided above
for est noise should provide sufficient information to run each of these programs.

The input to compare wander requires two output files from est noise, resid.out
and max.dat. The resid.out lists the misfits to the time-dependent model pre-
scribed for est noise, while max.dat provides the estimated parameters of the noise
model. The output of compare wander is found in wander.out which provides a
measure of the drift; this is characterized by computing the RMS of (x(t+ τ)−x(t))
as a function of various intervals, τ , for time series (Agnew 1992). The quality of the
noise model provided by est noise can be assessed through simulating data using the
noise model from est noise and computing the drift from each set of simulated data.
I recommend that at least 200 simulations. The drift from each simulation is stored,
then, for each τ interval, the RMS drift is sorted and then tabulated to establish the
median drift along with the 68% and 95% confidence levels. These statistics, along
with the drift of the original data should be plotted for a visual assessment of the
quality of the modeled noise and time dependence.

8. Sample scripts

In the directory example0, I provide three scripts to analyze two different time
series. Each script should be sufficiently documented such that they could be reused
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for other applications. However, to see the results, they do need the GMT plotting
library; www.soest.hawaii.edu/gmt/.

The three scripts are:

cleanEst.sh: This should be used first as it 1) makes a preliminary estimate
of the parameters of the time dependence of the data using a canned noise
model that is roughly appropriate for continuous GNSS data; 2) detrends
those data, 3) removes the outliers, and 4) reinserts the trends. The residuals
to the fit are plotted so that one can add additional time-dependent models
as required or remove outliers not caught by bust 5. In addition, the input
to successive calls to est noise is set-up, which are required in the next two
scripts.

EstNoise.sh: Uses the cleaned data, data.cl and the file est0.in from clean-
Est.sh along with a user selected noise model and runs est noise to find the
optimal parameters of the noise model. The residuals to this fit are plot-
ted. In addition, the output of est noise is feed into compare wander and the
RMS drift of the data, along with the statistics from a set from simulations
are plotted. Finally, the equivalent power spectral density is plotted.

EstNoiseAll.sh: Instead of evaluating a single type of noise model, this script
evaluates a sequence of noise models as a batch process such that the best
noise model can be identified after evaluating the changes in Log(likelihood)
and the corresponding drift. Initially, both the random-walk plus white noise
and the flicker plus white noise models are computed. The script picks the
one with the maximum likelihood and identifies it as the so called null model.
Next, the power law model is evaluated and its likelihood is compared with
that from the null model. Similarly, the flicker plus random-walk noise is
evaluated. Of these four, it is likely that one of these is a clear ”winner”.
However, the script goes on to evaluate both First order Gauss-Markov and
Generalize G-M noise. A final set of evaluations uses bandpass filtered noise
superimposed on either flicker or random-walk noise, and power-law noise.
For all of these, a drift curve is evaluated.

These scripts currently set for the otr format and mostly set-up for the gmt format.
Prior to running each of these scripts, you will need to edit each script to identify

where the executable programs reside. This line should be located near the top of
the file containing the script with an environment variable progs. The actual work
by these scripts is carried out in /tmp/SCRATCH.

By typing the command, one should get documentation with regards to the inputs
to these files. The example0 directory contains the scripts, two data sets, files that
are required for the inputs, and the output plot files.
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8.1. Example 1. The data are collected from a site with observations spanning
both the San Simeon and Parkfield Earthquakes (2003 and 2004 respectively). The
time dependent model includes sinusoids, a secular rate, offsets due to both earth-
quakes, canp.off, two Omori law, decay functions and a rate change, canp.trd,
and a few observations deleted just after the Parkfield earthquake, canp.edit. The
initial ”cleaning” is obtained by:
cleanEst.sh -d canp.e -f otr -O canp.off -T canp.trd -E canp.edit

Because the time constant for the Omori function for the Parkfield earthquake is
being estimated, est noise runs slower than normal. The results can be found in
canp.e.ps and est canp.e.out. To speed-up the next set of evaluations, I have
modified the .trd file by fixing the Omori time constant for the Parkfield Earth-
quake to 0.0061746 years which is shown in canp1.trd. Consequently, I re-run
cleanEst.sh
cleanEst.sh -d canp.e -f otr -O canp.off -T canp1.trd -E canp.edit

To evaluate a specific noise model, I run EstNoise.sh as:
EstNoise.sh -d canp.e -f otr -M PL

The outputs of this analysis are shown in canp.e PL.ps and est canp.e PL.out.
The plot shows the residuals to a fit to a time dependent model, the drift of the
data compared to simulated data having the same model of noise, and the equivalent
power spectra of the noise model. The drift suggests that observed data has slightly
more noise over the 300 to 1000 day periods that the noise provided by a power-law
noise model. Consequently, I could try a combination of flicker and random walk.
EstNoise.sh -d canp.e -f otr -M FLRW

Indeed, examination of the drift, canp.e FLRW.ps suggests an improvement in the
fit. In addition, the increase in Log likelihood, from -7667.7 to -7660.9 from the PL
to the FLRW model suggests that the flicker and random-walk model of noise is more
appropriate for this data set. Likewise, other noise models can be evaluated.

However, a more comprehensive search for the optimal noise model is carried out
with EstNoiseAll.sh. For this example, it is invoked with:
EstNoiseAll.sh -d canp.e -f otr

Examination of the results of the drift spectra along with the values of Log(likelihood)
(MLE), AIC, and BIC shown in canp.e all.ps suggests that the FLRW noise model
is best since it has the largest MLE and the smallest AIC and BIC.

8.2. Example 2. This is an example of simulated noise having first order Gauss
Markov noise. In addition, there is an offset, and the data use the gmt format. Ini-
tially, the data are ”cleaned”;
cleanEst.sh -d noise2.gmt -f gmt -E noise.edit -O noise.off
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The results are presented in noise2.gmt.ps and est noise2.gmt.out.

Noise modeling is accomplished by:
EstNoise.sh -d -d noise2.gmt -f gmt -M RW

Although other noise models can be evaluated, PL, FOGM, and GM, none seem to
be much better than the random walk model.

Likewise, a search of optimal noise models is provided by invoking:
EstNoiseAll.sh -d noise2.gmt -f gmt

Examination of the results, noise2.gmt all.ps suggests that RW is probably the
best noise model since its closest competitor, FOGM, has marginally larger MLE
(1.39) and lower AIC (-0.8) relative to the null model of RW. On the other hand,
BIC for FOGM is worse than for RW. The most conservative choice would be to
chose the model having random-walk represent the data at its longest periods which
provides larger standard error in rate relative to the FOGM model.

9. Updates

The following incremental changes have been made; December 28, 2015

7.21: This is the first, fully working version.
7.22: The sizes of some of the common block variables have been reduced along

with elimination of some code, and its dimensioned arrays. This is also a
working version, but the size is still too big for static linking on Linux

7.23: The common block arrays have been converted to modules or global vari-
ables consistent with Fortran 90/95. The goal was to reduce the size of the
program so that it could be statically linked. Unfortunately, it is still too
big and there appears to be a bug when the time constant of the exponen-
tial/Omori law is estimated.

7.24: Attempt to re-write the code to eliminate nearly all of the common blocks.
This is a work in progress.

10. References

Agnew, D. (1992), The time domain behavior of power law noises, Geophys. Res.
Lett., doi:10.1029/91GL02832.

Bos, M. S., R. M. S. Fernandes, S. P. D. Williams, and L. Bastos (2012), Fast error
analysis of continuous GPS observations, J. Geod., doi:10.1007/s00190-007-0165-x.

Hackl, M., R. Malservisi, U. Hugentobler, and R. Wonnacott (2011), Estimation
of velocity uncertainties from GPS time series: examples from analysis of the South
African TrigNet network, J. Geophy. Res., 116B15:11404

Langbein, J., and H. Johnson (1997), Correlated error in geodetic time series:
Implications for time-dependent deformation, J. Geophy. Res., 102, 591–604.



16 JOHN LANGBEIN US GEOLOGICAL SURVEY MENLO PARK, CA LANGBEIN@USGS.GOV

Langbein, J. (2004), Noise in two-color electronic distance meter measurements
revisited, J. Geophy. Res. doi:10.1029/ 2003JB002819.

Langbein, J. [2008], Noise in GPS displacement measurements from Southern Cal-
ifornia and Southern Nevada, J. Geophy. Res. doi10.1029/2007JB005247.

Langbein, J. [2009], Computer algorithm for analyzing and processing bore- hole
strainmeter data, Comput. Geosci., 36(5), 611619, doi:10.1016/j.cageo.2009.08.011

Langbein, J. [2012], Estimating rate uncertainty with maximum likelihood: differ-
ences between power-law and flickerrandom-walk models, J. Geod. doi:10.1007/s00190-
012-0556-5

Nelder, J. A., and R. Mead (1965), A simplex method for function minimization,
Computer Journal 7: 308?313. doi:10.1093/comjnl/7.4.308

Press,, W.H, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, (1992) Numer-
ical Recipes in Fortran 77, second edition, Cambridge University Press.

Williams, S. D. P., Y. Bock, P. Fang, P. Jamason, R. M. Nikolaidis, L. Prawirodirdjo,
M. Miller, and D. J. Johnson (2004), Error analysis of continuous GPS position time
series, J. Geophy. Res. doi:10.1029/2003JB002741.


