# **Geological Society of America Memoirs**

# CHAPTER 2 History of Controlled-Source Seismology—A Brief Summary

*Geological Society of America Memoirs* 2012;208;7-46 doi: 10.1130/2012.2208(02)

| Email alerting services | click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article |
|-------------------------|----------------------------------------------------------------------------------------------------|
| Subscribe               | click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Memoirs         |
| Permission request      | click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA                                 |

Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.

Notes



© 2012 Geological Society of America

### CHAPTER 2 S

# History of Controlled-Source Seismology—A Brief Summary

### 2.1. INTRODUCTION AND WORLDWIDE REVIEWS

Controlled-source seismology (also called "explosion seismology" or "deep-seismic sounding") is a special method to explore the velocity-depth structure of the Earth's crust and uppermost mantle, approximately to a depth range of about 50–100 km, by the investigation of the propagation of seismic body waves. The particular advantage of controlled-source seismology is that it uses man-made seismic sources, such as quarry blasts, borehole or underwater explosions, vibrators on land and in water (airguns), etc., where time and origin of the seismic source are precisely known. This has the particular advantage that the instruments can be switched on and off at any pre-established time and can be arranged and properly oriented on profiles or fans.

The beginning of controlled-source seismology can be defined in several ways. In 2009, controlled-source seismology could have celebrated its 160th birthday, because in 1849, Robert Mallet used dynamite explosions to measure the speed of elastic waves in surface rocks. In 2006, controlled-source seismology could have celebrated its 100th birthday, because in 1906, Emil Wiechert in Goettingen developed the first mobile seismograph with which profiles could be laid out. In 2008, it was 100 years since Ludger Mintrop made the first experiments to investigate the uppermost sedimentary layers using a weight drop and recording with Wiechert's portable seismographs. The stepwise improvement and development of this method led to applied geophysics and to its first commercial successes in the 1930s, when gravity and seismic prospecting guided geologists to locate oil resources in sedimentary basins.

The scientific exploration of the Earth's crust using controlled-source seismology as we know it today, however, effectively only started after World War II, when simultaneously the systematic use of large explosions and of quarry blasts, the development of proper instrumentation, and theoretical work on wave propagation became a joint and worldwide effort to study the physical properties of the Earth's crust and uppermost mantle. With time, borehole explosions on land and the development of non-explosive sources for oceanic research as well as the development of recording devices, both on land and in water, became determining factors for large-scale experiments, hand in hand with the development of theory and corresponding fast computer programs to handle the steadily increasing amount of data.

Controlled-source seismology involves both seismic-refraction and seismic-reflection investigations. In general, reflections (with much higher frequencies than used in refraction work) deliver completely different information than do refractionwide angle studies. Often, reflection sections show structures and tectonics directly and with relatively high resolution, while refraction-wide angle studies reveal major interfaces and variations in velocities that are important for petrologic interpretations.

Since the beginning of explosion seismology, text books on seismic theory and interpretation methods (e.g., Nettleton, 1940) as well as reviews on crustal and upper-mantle research, achieved by seismic and seismological methods, were published from time to time, summarizing the results for the whole world. Table 2.1 gives an overview of summary publications on worldwide seismic crustal and uppermost mantle studies, sorted by publication date.

### 2.2. REVIEWS AT REGIONAL SCALES

Many publications exist in which the results of seismic research projects for particular regions were reviewed. There are, for example, crustal study summaries for individual countries or groups of countries such as Scandinavia, or summaries on larger regions such as the western United States. Other summaries concentrate on tectonic units such as the Alps, or the Afro-Arabian rift system. Furthermore, crustal thickness (depth to the Mohorovičić discontinuity, or Moho) compilations exist for Europe, the former USSR, the United States, and Australia, for example. Those summaries were updated from time to time by the same or by other authors, depending on the state of the art at the time. In Table 2.2, publications were collected which review results on regional scales covering countries, continents and/or large tectonic units, sorted by publication date.

### 2.3. THE FIRST 100 YEARS (1845-1945)

Since the beginning of the twentieth century, seismic waves have been used to study Earth's interior. Such studies involved both investigations of the whole Earth by distant earthquakes and of the Earth's crust by local natural and artificial events. Thus, the earliest studies of the Earth's crust employed whatever data were available, either earthquake traveltimes or controlled sources. Mohorovičić's classic study that defined the crust was based on earthquake traveltimes rather than on controlled sources. Nevertheless, Mohorovičić is still considered as the father of seismic studies of the Earth's crust. The rapid development of this special branch of seismology would not have been possible without the earlier technical developments of seismographs and sensitive recording devices during the nineteenth century. An early historic review was published by Mintrop as early as 1947, describing the history of the first 100 years of earthquake research and explosion

8

TABLE 2.1. REVIEWS OF WORLDWIDE SEISMIC CRUSTAL AND UPPERMOST MANTLE STUDIES

| Year            | Author or editor                          | Contents                                                           |   |
|-----------------|-------------------------------------------|--------------------------------------------------------------------|---|
| 1947            | Mintrop                                   | 100 years of explosion seismology                                  | Α |
| 1951            | Gutenberg                                 | Crustal layers of the continents and oceans                        | А |
| 1951            | Macelwane                                 | Tables of seismic investigations until 1950                        | А |
| 1954            | Reinhardt                                 | Quarry blasts and explosion seismology history                     | В |
| 1955            | Poldervaart                               | Crust of the Earth                                                 | Е |
| 1955            | Gutenberg                                 | Wave velocities in the Earth's crust                               | А |
| 1961            | Closs and Behnke                          | Velocity-cross section around the world                            | A |
| 1961            | Steinhart and Meyer                       | Explosion studies of continental structure                         | F |
| 1966            | James and Steinhart                       | Critical review of explosion studies 1960–1965                     | Ā |
| 1969            | Hart                                      | The Earth's crust and upper mantle                                 | F |
| 1971            | Heacock                                   | Structure and physical properties of the Farth's crust             | F |
| 1973            | Mueller                                   | Structure of the Earth's crust based on seismic data               | F |
| 1075            | Ansorge                                   | Inpermost mantle under Europe and North America                    | B |
| 1075            | Christensen and Salisbury                 | Structure and constitution of lower oceanic crust                  | Δ |
| 1077            | Heacock                                   | The Earth's crust—Its nature and properties                        | Ē |
| 1078            | Klemperer et al                           | Seismic probing of continents and their margins                    | Ē |
| 1090            | Spudich and Oroutt                        | Seismic probing of continents and their margins                    | ~ |
| 1001            | Sollar at al                              | A global crustal thickness man                                     |   |
| 1001            | Brodobl                                   | Tables of Earth's cruct and uppermeet mantle structure             | ^ |
| 1006            | Mojoopor                                  | The continental crust                                              | ~ |
| 1900            | Nelssiel<br>Barazangi and Brown           | Reflection existences on continente - Clobal perspective           | Ē |
| 1900            |                                           | Mente beteregeneities Lich resolution experimente                  |   |
| 1907            | Fucils et al.                             | Common reflection profiling of continental litheophere             | Ê |
| 1907            | Mannews and Smith                         | Seismic reflection profiling of continental innosphere             |   |
| 1967            |                                           |                                                                    | A |
| 1987            |                                           | Oceans<br>Colorado a sector and their mercine                      | A |
| 1900            | Leven et al.                              | Seismic probing of continents and their margins                    |   |
| 1991            | Meissner et al.                           | Continental lithosphere: deep seismic reflections                  |   |
| 1992            | Mooney and Meissner                       | Review of seismic-reflection profiling of lower crust              | A |
| 1992            | Holdrook et al.                           | Seismic velocity structure of deep continental crust               | A |
| 1992a,b,c       | Ziegier                                   | Geodynamics of rifting                                             | E |
| 1994            | Clowes and Green                          | Seismic reflection profiling of continents and margins             | E |
| 1995            | Christensen and Mooney                    | Seismic velocity structure and composition of continents           | A |
| 1995            | Olsen                                     | Continental rifts: Evolution, structure, tectonics                 | E |
| 1996            | White et al.                              | Seismic reflection profiling of continents and margins             | E |
| 1997            | Jacob et al.                              | Lithospheric structure and evolution in continental rifts          | E |
| 1998            | Mooney et al.                             | CRUS 15.1: A global model at 5° x 5°                               | A |
| 1998            | Klemperer and Mooney                      | Deep seismic probing of the continents                             | E |
| 1999            | Jones                                     | Oceans                                                             | A |
| 2000            | Carbonell et al.                          | Deep seismic profiling of continents and margins                   | E |
| 2000            | Jacob et al.                              | Active and passive seismic techniques reviewed                     | E |
| 2002            | Mooney                                    | Continental crust                                                  | Α |
| 2002            | Mooney et al.                             | Seismic velocity structure from controlled-source data             | A |
| 2002            | Minshull                                  | Seismic structure of the oceanic crust                             | А |
| 2002            | Thybo                                     | Deep seismic probing of continents and margins                     | Е |
| 2004            | Davey and Jones                           | Continental lithosphere                                            | Е |
| 2005            | Fowler                                    | The solid Earth—Global geophysics                                  | А |
| 2006            | Snyder et al.                             | Seismic probing of continents and their margins                    | Е |
| 2007            | Romanowicz and Dziewonski                 | Seismology and structure of the earth                              | Е |
| 2012            | Prodehl and Mooney (this volume)          | Controlled-source seismology history and global model              | В |
| Note: A-article | in a book or journal, B-single-author boo | k, E-editors of a book with several seismic crustal study articles | s |

seismology (Mintrop, 1947; see Appendix A3-1). While the average structure of the Earth's crust could be detected by the detailed study of local earthquake records, the accuracy of seismological studies was limited for more refined studies of the Earth's crust because of too many unknown parameters, i.e., the exact time and the exact location of natural earthquakes.

In the middle of the nineteenth century, the first studies with controlled events were started. Explosion seismology was born in 1849 when Robert Mallet used dynamite explosions to measure the speed of elastic waves in surface rocks (Mintrop, 1947; Dewey and Byerly, 1969; Jacob et al., 2000).

The final instrumental progression to record artificial earthquakes was in 1906, when Emil Wiechert in Göttingen constructed a transportable seismograph which amplified the horizontal component of the ground movements by 50,000. In 1908, active seismological experiments started in Goettingen, when Ludger Mintrop used a weight drop as a controlled source and recorded it with Wiechert's portable seismographs. Thus he obtained the first seismograms, which included the fine details of precursor waves, now called P and S body waves (Mintrop, 1947).

For academic crustal structure research, however, it was not until 1923 that "artificial earthquakes" were introduced by the use of large explosions (Angenheister, 1927, 1928; Wiechert, 1923, 1926, 1929). Not only had large explosions been recorded in Germany. For example, in France, large surface explosions in

## History of Controlled-Source Seismology—A Brief Summary

| Year  | Author or editor                 | Begion                                         | =  |
|-------|----------------------------------|------------------------------------------------|----|
| 1000  |                                  |                                                | _  |
| 1963  | Closs and Labrouste              | Western Alps A                                 |    |
| 1904  | Stoinbart and Smith              | North America                                  |    |
| 1900  | Morolli et al                    |                                                |    |
| 1060  | Kosminskova ot al                |                                                |    |
| 1909  | Hooly and Warron                 | United States A                                |    |
| 1070  | Maxwell                          |                                                |    |
| 1970  | Shor et al                       | Pacific basin A                                |    |
| 1071  | Vogol                            | Northern Europe                                |    |
| 1072  | Sollogub et al                   | Eastern and southeastern Europe                |    |
| 1072  | Willmore et al                   | British Isles                                  |    |
| 1073  | Sellevoll                        | Northern Furone A                              |    |
| 1073  | Belvaevsky et al                 |                                                |    |
| 1973  | Cleary                           | Australia                                      |    |
| 1973  | Warren and Healy                 | United States A                                |    |
| 1973  | Berry                            | Canada                                         |    |
| 1973  | Massé                            | North America A                                |    |
| 1973  | Furumoto et al.                  | Hawaii and Central Pacific Basin A             |    |
| 1975  | Woollard                         | Pacific Ocean A                                |    |
| 1976a | Giese et al.                     | Central Europe E                               |    |
| 1977  | Makris                           | Eastern Mediterranean and Hellenides B         | j. |
| 1980  | Morelli and Nicolich             | Western Mediterranean B                        | j. |
| 1980  | Zverev and Kosminskava           | USSR B                                         | j. |
| 1980  | Brewer and Oliver                | USA COCORP A                                   |    |
| 1980  | Jacoby et al.                    | Iceland E                                      |    |
| 1987  | Meissner et al.                  | Europe A                                       |    |
| 1987  | Orcutt                           | Oceans A                                       | 1  |
| 1988  | Dooley and Moss, Moss and Dooley | Australia A                                    |    |
| 1989  | Yan and Mechie                   | Alps A                                         |    |
| 1989  | Pakiser and Mooney               | United States E                                |    |
| 1989  | Braile et al.                    | North America A                                |    |
| 1989  | Smithson and Johnson             | Western United States A                        |    |
| 1989  | Phinney and Roy-Chowdury         | Eastern United States A                        |    |
| 1989  | Trehu et al.                     | Continental margin, North America A            | •  |
| 1989  | Mereu et al.                     | Canada COCRUST A                               | •  |
| 1990  | Meissner and Bortfeld            | Germany DEKORP Atlas B                         |    |
| 1991  | Bois and ECORS Scienific Parties | France ECORS review A                          | 1  |
| 1991  | Heitzmann et al.                 | SWISS AIPS A                                   | 1  |
| 1001  |                                  | Australia A                                    |    |
| 1001  | Drummond                         | Australia A                                    |    |
| 1002  | Blundell et al                   |                                                | :  |
| 1992  | Freeman and Mueller              | Europe EGT maps E                              | :  |
| 1992  | Clowes et al                     | Canada LITHOPBOBE                              |    |
| 1992  | Klemperer and Hobbs              | British Isles BIRPS Atlas B                    |    |
| 1993  | Mechie et al.                    | USSB PNF data                                  |    |
| 1994  | Mahadevan                        | India B                                        |    |
| 1994  | Ludden                           | Canada LITHOPROBE Abitibi-Grenville I          |    |
| 1994  | Percival                         | Canada LITHOPROBE Kapuskasing transect E       |    |
| 1994  | Prodehl et al.                   | Kenya Rift E                                   |    |
| 1995  | Prodehl et al.                   | Central European Rift A                        |    |
| 1995  | Ludden                           | Canada LITHOPROBE Abitibi-Grenville II E       |    |
| 1995  | Cook                             | Canada LITHPOROBE S Canadian Cordillera E      |    |
| 1995  | Braile et al.                    | East African Rift A                            |    |
| 1996  | Pavlenkova                       | USSR A                                         | •  |
| 1997  | Fuis et al.                      | TACT Northern Alaska A                         |    |
| 1997  | Fuchs et al.                     | Afro-Arabian Rift E                            |    |
| 1997  | Prodehl et al.                   | Afro-Arabian Rift A                            |    |
| 1998  | Quinian                          | Canada LITHOPROBE Newfoundiand Appaiachians E  |    |
| 1998  | Li anu Mooney                    | Chile: Centrel Andeen Deformation              | 1  |
| 1999  | neullei<br>Luddon and Hynoc      | Conside LITHOPPORE Abitibi Granuilla III       | :  |
| 2000a | Rose                             | Canada LITHOPROBE Alberta bacament L           |    |
| 2000  | Clitheroe et al                  |                                                |    |
| 2000  | lwasaki et al                    | Janan A                                        |    |
| 2002  | Ross                             | Canada LITHOPROBE Alberta basement II          | i. |
| 2002a | Wardle and Hall                  | LITHOPROBE eastern Canadian Shield on-offshore |    |
| 2002  | Chulick and Mooney               | North America and adjacent oceans A            |    |

### TABLE 2.2. REVIEWS OF REGIONAL SEISMIC CRUSTAL AND UPPERMOST MANTLE STUDIES

10

TABLE 2.2. REVIEWS OF REGIONAL SEISMIC CRUSTAL AND UPPERMOST MANTLE STUDIES (continued)

| Year     | Author or editor                              | Region                                                                |              |
|----------|-----------------------------------------------|-----------------------------------------------------------------------|--------------|
| 2003     | Collins et al.                                | Australia                                                             | А            |
| 2005     | Landes et al.                                 | Ireland and Irish seas                                                | А            |
| 2005a    | Hajnal et al.                                 | Canada LITHOPROBE Trans-Hudson Orogen                                 | E            |
| 2005     | Cook and Erdmer                               | Canada LITHOPROBE northwestern Canada                                 | E            |
| 2006     | Gee and Stephenson                            | Europe EUROPROBE                                                      | E            |
| 2006     | Percival and Helmstaedt                       | Canada LITHOPROBE West Superior Province                              | E            |
| 2006     | Li et al.                                     | China                                                                 | А            |
| 2006     | Gebrande et al.                               | Alps—TRANSALP                                                         | E            |
| 2007     | Guterch et al.                                | Central and eastern Europe—long-range profiles                        | А            |
| 2009     | Díaz and Gallart                              | Iberian peninsula                                                     | А            |
| 2009     | Grad et al.                                   | Moho map of European plate                                            | А            |
| 2010     | Finlayson                                     | Australia deep seismic profiling chronicle                            | В            |
| Note: A- | article in a book or journal; B—single-author | book; E-editors of a book or journal with several seismic crustal stu | dy articles. |

1924 near La Courtine were recorded and reported. In California and in the eastern United States, seismic investigations of quarry blasts had been undertaken, but successful interpretations were not published until 1935. Seismic refraction and reflection investigations in water-covered areas started as early as 1927 (Rosaire and Lester, 1932) and were continued in the 1930s at the Atlantic coastal shelf (e.g., Ewing et al., 1937).

An overview on seismic velocities obtained from explosions and blasts in France, Germany, Italy, Switzerland and California up to 1939 was published by J.B. Macelwane in table 41 of the first edition of Volume VII of *Physics of the Earth* (edited by B. Gutenberg) on the internal constitution of the Earth (see second edition: Macelwane, 1951, table 41, reproduced in Table 3.3-02 in Chapter 3). A historical review of early explosion seismology work until the early 1950s was also summarized by Reinhardt (1954; see Appendix A4-1). Table 2.3 summarizes outstanding historical events on the early development of controlled-source seismology.

### 2.4. THE 1940s (1940-1950)

Controlled-source seismology investigations of the Earth's crust and the first international cooperation started effectively after 1945. The large explosions on Heligoland in 1947 and in the Black Forest in 1948 (Schulze, 1947; Reich et al., 1948) had the greatest impacts on crustal studies at this time. The explosion

on the island of Heligoland is the factual beginning of controlledsource seismology for science in Germany (Schulze, 1974).

Early crustal studies in the 1940s had also been undertaken in other parts of the world, in part during World War II. In 1950, Twaltwadzse reported on a series of very large explosions which had occurred between 1941 and 1945 in the Soviet Republic of Georgia. In 1949 and 1950, underwater explosions in the lakes Issyk-Kul and Kara-Kul served to investigate the crustal structure under the northern Tien-Shan region (Gamburtsev, 1952). In Canada, rock bursts occurring between 1938 and 1945 in the mining area near Kirkland Lake, Ontario, were used for the first time for crustal structure studies (e.g., Hodgson, 1947) and these were continued in 1947-1951. In the United States, a large explosion of ammunition occurred in 1944 near Port Chicago in California (Byerly, 1946). The first nuclear tests were also recorded in North America (Gutenberg and Richter, 1946). In the Appalachian Mountains, large quarry blasts were recorded by optical-mechanical-electrical mobile field stations at distances up to 350 km (Tuve et al., 1948).

At sea during World War II, the techniques of seismic measurement were further developed so that after 1945 the experiments could be extended from shallow coastal waters into the deep ocean basins using hydrophones. The data obtained in the late 1930s were supplemented by new expeditions, in particular in the northwestern Atlantic Ocean in 1948 and 1949 (e.g., Drake et al., 1952; Ewing et al., 1950), but offshore investigations were

TABLE 2.3. MAJOR STEPS TOWARDS CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CONTINENTAL CRUST IN THE BEGINNING OF MODERN SEISMOLOGY

|         |           |                                                   | 0                     |                            |
|---------|-----------|---------------------------------------------------|-----------------------|----------------------------|
| Chapter | Year      | Project                                           | Location              | Reference                  |
| 3.3     | 1849      | First controlled-source seismic experiment        | Ireland               | Mallet (1852)              |
| 3.3     | 1906      | Wiechert's first portable seismometer             | Germany               | Wiechert (1923)            |
| 3.3     | 1908      | Mintrop's iron ball experiment                    | Germany               | Mintrop (1947)             |
| 3.3     | 1923      | Start of using "artificial earthquakes" (blasts)  | Central Europe        | Wiechert (1926)            |
| 3.3     | 1926–1929 | Quarry blast recording in southern California     | California            | Wood and Richter (1931)    |
| 3.3     | 1927      | Observations at detonations                       | Germany               | Angenheister (1927)        |
| 3.3     | 1927      | Coastal lakes Louisiana seismic-refraction tests  | United States         | Rosaire and Lester (1932)  |
| 3.3     | 1931      | Quarry blast recording in southern California     | California            | Wood and Richter (1933)    |
| 3.3     | 1935      | Richmond quarry blasts                            | California            | Byerly and Wilson (1935b)  |
| 3.3     | 1935      | Atlantic coastal plain seismic-refraction surveys | Atlantic shelf        | Ewing et al. (1937)        |
| 3.3     | 1936–1938 | New England quarry blasts                         | Eastern United States | Leet (1938)                |
| 3.3     | 1938      | Bermuda seismic-refraction survey                 | Atlantic              | Woollard and Ewing (1939)  |
| 3.3     | 1939      | Shelf east of Britain                             | North Sea             | Bullard et al. (1940)      |
| 3.3     | 1940      | Continental slope off Britain                     | North Atlantic        | Bullard and Gaskell (1941) |

also undertaken in the eastern Atlantic Ocean in 1949 (Hill and Swallow, 1950) and in the Pacific Ocean off California in 1948 (Raitt, 1949).

An overview of the early seismic projects undertaken in the 1940s is mentioned in Chapter 4 and can be seen in Table 2.4.

By the early 1950s, the overall picture of the crust had been established. Gutenberg (1951b, 1955) summarized worldwide results; his crustal columns (Fig. 2.4-01) provided a rough picture of the seismic structure of the Earth's crust around the world (Gutenberg, 1955). Reinhardt (1954) wrote a fundamental study on the use of quarry blasts. In his review of crustal investigations up to 1954, he plotted the basic scheme (see Fig. 4.1-01) of seismic refraction work, compiled a world map (Fig. 2.4-02) showing the locations of crustal studies around the world which

had used explosive sources, and also summarized the results in crustal columns. Beneath a layer of sediments, the Earth was divided into an upper crust of granitic composition and a lower crust consisting of gabbroic rocks, underlain by the Mohorovičić discontinuity and a peridotitic mantle layer (Gutenberg, 1951b, 1955; Reinhardt, 1954).

### 2.5. THE 1950s (1950-1960)

Since the beginning of the 1950s, commercial quarry blasts have been increasingly used, since they proved to be a powerful and low-cost energy source for a systematic investigation of the detailed structure of the Earth's crust (Reinhardt, 1954). Systematic seismic crustal research started in central Europe in

TABLE 2.4. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1940S

| Chapter | Year         | Project                                        | Location                           | Reference               |
|---------|--------------|------------------------------------------------|------------------------------------|-------------------------|
| 4.1.0   | 1947         | Heligoland                                     | Germany                            | Reich et al. (1951)     |
| 4.1.0   | 1948         | Haslach                                        | Southern Germany                   | Reich et al. (1948)     |
| 4.2.1   | 1941ff       | Large explosions                               | Central Asia, USSR                 | Twaltwadze (1950)       |
| 4.2.1   | 1949–1950    | Tien-Shan                                      | Central Asia, USSR                 | Gamburtsev (1952)       |
| 4.2.2   | 1938ff       | Rock bursts                                    | Canada                             | Hodgson (1953)          |
| 4.2.2   | 1945ff       | Appalachian quarry blasts                      | Eastern United States              | Tuve et al. (1948)      |
| 4.2.2   | 1945–1946    | First nuclear tests                            | New Mexico, United States; Pacific | Gutenberg (1946)        |
| 4.2.2   | End of 1940s | Big Horn County, Montana, United States        | Western United States              | Junger (1951)           |
| 4.2.3   | 1948–1949    | Whitwatersrand tremors                         | South Africa                       | Willmore et al. (1952)  |
| 4.2.4   | 1948         | Gulf of Maine                                  | Northwest Atlantic                 | Drake et al. (1952)     |
| 4.2.4   | 1948         | Pacific off Southern California, United States | Eastern Pacific                    | Raitt (1949)            |
| 4.2.4   | 1948–1949    | North American Basin                           | Northwest Atlantic                 | Ewing et al. (1952)     |
| 4.2.4   | 1948–1949    | North American Basin                           | Northwest Atlantic                 | Hersey et al. (1952)    |
| 4.2.4   | 1949         | Gulf of Maine                                  | Northwest Atlantic                 | Katz et al. (1953)      |
| 4.2.4   | 1949         | West of British Isles                          | Northeast Atlantic                 | Hill and Swallow (1950) |

Figure 2.4-01. (See also Fig. 4.4-01.) Average velocities of longitudinal and of transverse waves in the Earth's crust based on explosion records (from Gutenberg, 1955, fig. 1). [Geological Society of America Special Paper 62, p. 19–34. Reproduced by permission of the Geological Society of America.]



 $V_P$  (vertical) and  $V_S$  (*italics*) determined from blasts and rockbursts to 1954



Figure 2.4-02. (See also Fig. 4.4-02.) Location map of large explosion-seismic studies of the Earth's crust (from Reinhardt, 1954, fig. 3). For explanation of numbers, see Table 4.4-02 in Chapter 4. [Freiberger Forschungshefte, C15, p. 9–91. Reproduced by permission of TU Freiberg, Germany.]

1954, when the Alps became a special target of crustal research by the foundation of the Subcommission of Alpine Explosions under the umbrella of the International Union of Geodesy and Geophysics (IUGG), initiating the first major inter-European fieldwork in 1954 (Closs and Labrouste, 1963). In 1957 in Germany, a priority program funded by the German Research Society, "Geophysical Investigation of Crustal Structure in Central Europe," was initiated. This program comprised both reflection and refraction seismic experiments and involved all geophysical university institutes of Germany and geophysical departments of the German state geological surveys. It also prompted cooperation with geophysical institutions in neighboring countries. The priority program included the development of new recording systems (Closs and Behnke, 1961; Closs, 1969; Giese et al., 1976a). It was strongly supported by commercial geophysical exploration companies in Germany which showed particular interest in the scientific deep-seismic sounding programs and helped these efforts by recording up to 12 seconds two-way traveltime (e.g., Dohr, 1959; Liebscher, 1964).

In North America and Canada, the studies of the Earth's crustal structure using blasts and rockbursts were continued more systematically from the late 1940s. Tatel and Tuve (1955) and Katz (1955) carried out seismic-refraction experiments in various geologic provinces and regions of the United States. Steinhart and Meyer (1961) edited a special volume describing the experimental work of several projects in detail, the interpretation method used at this time and a critical review of worldwide results (see Appendix A5-1).

In the USSR, the first period of deep-seismic sounding experiments started at the end of the 1940s. The first deep seismic research was conducted in 1948–1954 under the leadership of G.A. Gamburtzev, E. Galperin, and I.P. Kosminskaya in central Asia and in the southern Caspian area. Since the middle of the 1950s, deep-seismic sounding profiles were recorded on the Russian platform as well as on the Russian part of the Baltic Shield, in central Asia, in the Caucasus, and in the Urals covering thousands of kilometers (results published in Russian, for references see Pavlenkova, 1996). A major project covered the transition zone from the Asian continent to the Pacific Ocean (Galperin and Kosminskaya, 1964).

In Japan, controlled-source seismology started in 1950, when the construction of the Isibuti dam in north-central Honshu required a large explosion of 57 tons "carlit" to be detonated simultaneously. Within the short time span of only ten days, an active working group, the Research Group for Explosion Seismology, was established and became very active in the following years to provide instrumentation and to organize shotpoints for deep-seismic sounding investigations (Research Group for Explosion Seismology, Tokyo, 1951).

On continental Australia, the first definitive measurement of Moho depth was interpreted from recordings of nuclear explosions at Maralinga (South Australia) westwards across the Nullarbor Plain (Bolt et al., 1958; Finlayson, 2010; Appendix 2-2).

At the same time, when the continental crust was studied by the first systematic experiments, the seismic refraction method for work at sea was already well established. The experiments of Ewing and coworkers in the 1950s were concentrated mainly on the Northwestern Pacific, but the Gulf of Mexico and the Caribbean Sea were also investigated in great detail. Worldwide sea expeditions led U.S. and British researchers into the eastern Atlantic, into the Pacific, and into the Mediterranean Sea, and the Indian Ocean became the focus of several seismic refraction investigations. A detailed overview and summary on oceanic crustal structure studies was published by Raitt (1963), based on experiments obtained by the application of the seismic-refraction method in the 1950s.

By the end of the 1950s, a basic knowledge on crustal structure around the Earth had been established, based on a considerable number of seismic refraction investigations recording man-made explosions out to distances of several hundred kilometers, as shown in reviews such as Steinhart and Meyer (1961; see Table 5.7-01) and of Closs and Behnke (1961; Fig. 2.5-01). Steinhart and Meyer (1961; see Appendix A5-1) as well as Ewing (1963a) also gave detailed and critical reviews on the state of the art in the methodology and its limitations, including the present state of instrumentation and major field problems. An overview of the major seismic projects undertaken in the 1950s and mentioned in Chapter 5 can be seen in Table 2.5.

### 2.6. THE 1960s (1960-1970)

The first experimental phase of the 1950s to develop new types of instruments continued into the 1960s and finally led to the production of powerful instruments for wide-angle seismic profiling in large numbers, in particular in western Europe, North America, and the USSR. With this instrumentation, a major breakthrough in the study of the Earth's crust was achieved. In central Europe, in the western United States, and in the southern part of the USSR, major seismic-refraction fieldwork was undertaken. In central Europe, quarry blasts were the main source for seismic profiling; in the western United States and southwestern USSR, seismic energy was provided mainly by borehole explosions. Thus, at the end of the 1960s, major networks of seismic profiles existed in all three areas.

During the 1960s, experimental reflection profiling surveys were also undertaken in many parts of the world, in particular in Canada (e.g., Kanasewich and Cumming, 1965; Clowes et al., 1968), Germany (e.g., Liebscher, 1964; Dohr and Fuchs, 1967) and Russia (e.g., Beloussov et al., 1962; Kosminskaya and Riznichenko, 1964). They demonstrated that near-vertical profiling methods used in oil and gas exploration could be used to image geological structures within basement rocks and that at long recording times, reflections from the deep crust and the Moho could be obtained. This paved the way for COCORP and subsequent deep reflection programs around the world in the 1970s and 1980s.

In parallel with the fieldwork, the art of interpretation was pushed forward by new developments in the theory of seismic wave propagation and by applying the results using the rapidly developing new computer technology. The known methods were made more efficient, and at the same time new methods were developed to interpret the increasing number of recently observed data. In the 1960s, the interpretations were almost exclusively based on the correlation of waves by travel times, read from picked arrival times, plotted in time-distance graphs, and correlated by straight or curved lines, but gradually seismic phase correlation using record sections became common.

The use of record sections created a major breakthrough in understanding the character of seismic waves and their relation to the structure of the Earth's crust and mantle which would guide the interpretation of seismic refraction observations through the following decades. In an internal report (Prodehl, 1998) a major collection of record sections was compiled which had been produced from observed data and had been published from the early 1960s to the end of the 1990s from major controlled-source seismic projects around the world. The report included an abstract and location map from the most relevant publication of the corresponding project. This report is reproduced in Appendix A2-1 and the data shown there will be referred to in the following chapters. Furthermore, for the Australian continent and its margins a comprehensive chronicle on the history of deep-seismic profiling was prepared showing maps and many data (Finlayson, 2010; Appendix A2-2). Additional data and abstracts can be found in Appendices A3 to A10 accompanying the corresponding decades. A more complete compilation of seismic projects carried out in the 1960s using controlled seismic sources and mentioned in Chapter 6 is compiled in Table 2.6.

While most of the seismic-refraction and -reflection experiments in the 1960s were carried out on a national basis, major international projects were pushed forward also. These efforts were strongly supported by the formulation of major international research programs, which were supported and financed by national research foundations and thus allowed the systematic study of specific tectonic regions of the Earth. In Europe, the European Seismological Commission (ESC) had been founded with meetings every two years, alternatively held in eastern or in



Figure 2.5-01. (See also Fig. 5.7-01.) West-east profile across the Earth at 45°N, compiled after individual results (for detailed references see Closs and Behnke, 1961). [Geologische Rundschau, v. 51, p. 315–330. Reproduced with kind permission of Springer Science+Business Media.]

### Chapter 2

#### TABLE 2.5 MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1950S

| Chapter | Year        | Project                                                    | Location              | Reference                        |
|---------|-------------|------------------------------------------------------------|-----------------------|----------------------------------|
| 5.1     | 1952        | Blaubeuren deep reflections                                | Germany               | Reich (1953)                     |
| 5.1     | 1955ff      | Deep reflection recording                                  | Germany               | Dohr (1959)                      |
| 5.1     | 1956–1958   | Lac Nègre and other lake shots                             | Western Alps          | Closs and Labrouste (1963)       |
| 5.1     | 1957ff      | Quarry blast profiling                                     | Germany               | Giese et al. (1976)              |
| 5.1     | 1957ff      | Seismic reflection work, southern Germany                  | Southern Germany      | Dohr (1959)                      |
| 5.1     | 1960        | lvrea zone borehole shot profiles                          | Western Alps          | Closs and Labrouste (1963)       |
| 5.2     | 1950ff      | Quarry blast and test explosions profiling                 | United States         | Tatel and Tuve (1955)            |
| 5.2     | 1950–1953   | New York–Pennsylvania quarry blasts                        | Eastern United States | Katz (1955)                      |
| 5.2     | 1955        | Underwater explosions                                      | Alaska                | Tatel and Tuve (1956)            |
| 5.2     | 1956–1959   | Nevada Test Site and quarry blast profiles,<br>Nevada-Utah | Western United States | Berg et al. (1960)               |
| 5.2     | 1957        | Central Plateau, Mexico                                    | Mexico                | Meyer et al. (1961a)             |
| 5.2     | 1958        | Arkansas-Missouri                                          | Central United States | Steinhart et al. (1961a)         |
| 5.2     | 1958–1959   | Wisconsin–Upper Michigan                                   | Central United States | Steinhart et al. (1961b)         |
| 5.2     | 1959        | Rocky Mountains, Montana                                   | Western United States | Meyer et al. (1961b)             |
| 5.3     | 1948–1954   | Central Asia, southern Caspian area                        | USSR                  | Pavlenkova (1996)                |
| 5.3     | 1955ff      | Deep seismic sounding profiling                            | USSR                  | Pavlenkova (1996)                |
| 5.3     | 1957-1958   | Deep seismic sounding profiling                            | Sea of Ochotsk        | Galperin and Kosminskava (1964)  |
| 5.4     | 1950        | First Japanese profiles on Honshu                          | Japan                 | Matuzawa et al. (1959)           |
| 5.4     | 1953-1956   | Nuclear explosions                                         | Australia             | Bolt et al. (1958)               |
| 5.4     | 1956-1957   | Eaglehawk guarry blasts                                    | East Australia        | Dovle et al. (1959)              |
| 5.4     | 1959        | Prospect blue metal guarry blasts                          | East Australia        | Bolt (1962)                      |
| 5.5.1   | 1952        | Wellington refraction line                                 | New Zealand           | Officer (1955)                   |
| 5.5.3   | 1950s       | Andes                                                      | Peru and Chile        | Tatel and Tuve (1958)            |
| 5.5.3   | 1950s-1960s | Arctic interior upper crust                                | Antarctica            | Bentley (1973)                   |
| 553     | 1959-1960   | Belgian Antarctic expedition                               | Antarctica            | Dieterle and Peterschmitt (1964) |
| 561     | 1950-1967   | Seismic reflection profiles Atlantic and Pacific           | Atlantic and Pacific  | Ewing and Ewing (1970)           |
| 561     | 1950        | Bermuda area                                               | Northwest Atlantic    | Officer et al. (1952)            |
| 561     | 1950        | North Atlantic Ocean                                       | Atlantic              | Gaskell and Swallow (1951)       |
| 561     | 1950+       | Continental slope south of Nova Scotia                     | Northwest Atlantic    | Officer and Ewing (1954)         |
| 561     | 1950+       | Grand Banks                                                | Northwest Atlantic    | Press and Beckmann (1954)        |
| 561     | 1950+       | Continental slope south of Grand Banks                     | Northwest Atlantic    | Bentley and Worzel (1956)        |
| 561     | 1950-1951   | English Channel                                            | English Channel       | Hill and King (1953)             |
| 561     | 1950-1952   | Bermuda—North American shelf                               | Northwest Atlantic    | Katz and Ewing (1956)            |
| 561     | 1951        | North American Basin                                       | Northwest Atlantic    | Ewing et al. (1954)              |
| 5.6.1   | 1952        | Gulf of Maine                                              | Northwest Atlantic    | Drake et al. $(1952)$            |
| 5.6.1   | 1952        | Deen-sea reflection profile (Bermuda)                      | Northwest Atlantic    | Officer (1955a)                  |
| 5.6.1   | 105/_1056   | LIS Atlantic continental margin                            | Northwest Atlantic    | Hereov et al. (1950)             |
| 5.6.1   | 1054 1050   | Caribbean Sea—Lesser Antilles                              | Caribbean Sea         | Edger et al. $(1071)$            |
| 5.6.2   | 1957        | Mid Pacific expedition                                     | Central Pacific       | Raitt (1956)                     |
| 5.6.2   | 1950        | North Pacific Ocean                                        | Pacific               | Gaskell and Swallow (1952)       |
| 5.6.2   | 1052-1052   | Capricorn expedition                                       | Contral Pacific       | Raitt (1956)                     |
| 5.6.2   | 1052-1955   | Indian Ocean and Mediterranean Soc                         | Middle-Fact           | Gaskell and Swallow (1952)       |
| 5.6.2   | 1052        | Paru-Chila Tranch                                          | South Pacific         | Raitt (1064)                     |
| 5.0.2   | 1057        | Fact Pacific Rise                                          | South Pacific         | Raitt (1964)                     |
| 5.0.2   | 1050        | East addition                                              | Jonan tranch          | $\int dwid ot al (1066)$         |
| 5.0.2   | 1959        | First Japanese deep-sea expedition                         | Japan liench          | Luuwiy et al. (1900)             |

western Europe. These meetings served as most effective communication centers between scientists in eastern and western Europe and secured personal contacts of scientists also at times of difficult political situations. A special subcommission of the ESC dealt in particular with experiments and results of explosion seismology investigations. In 1964 under the umbrella of IASPEI (International Association of Seismology and Physics of the Earth's Interior), the Upper Mantle Project was started as an international program of geophysical, geochemical, and geological studies concerning the "upper mantle and its influence on the development of the Earth's crust."

In central and western Europe, national research programs in Germany, Italy, France, and Britain were extended into collaborative investigations and triggered joint studies. The cooperative research in the Western Alps of the 1950s was continued in the 1960s. The Eastern Alps and the Apennines became the focus of international experiments mainly based on the fruitful cooperation of Italian, Austrian and German institutions. The Scandinavian countries undertook major efforts to investigate the Baltic Shield in close cooperation with German and British institutions. The Moho map in Figure 2.6-01, compiled by Morelli et al. (1967), is primarily the result of international cooperation.

The East European countries developed a separate methodology of deep-seismic sounding. They extended their national research projects into a cooperative effort by establishing a network of international profiles, which covered the entire southeast of Europe and included all Eastern Block countries. The resulting network of deep-seismic sounding profiles reached from the East European Craton of the USSR into Poland as well

# History of Controlled-Source Seismology-A Brief Summary

TABLE 2.6. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1960S

|         | TABLE 2    | 2.6. MAJOR CONTROLLED-SOURCE SEISMICT                | INVESTIGATIONS OF THE CR  | UST IN THE 19605                                   |
|---------|------------|------------------------------------------------------|---------------------------|----------------------------------------------------|
| Chapter | Year       | Project                                              | Location                  | Reference                                          |
| 6.2.2   | 1960ff     | Quarry blast profiling                               | Germany                   | Giese et al. (1976a)                               |
| 6.2.2   | 1964       | Common-depth-point Bavarian Molasse Basin            | Germany                   | Meissner (1966)                                    |
| 622     | 1968       | Common-depth-point profile Bhenish Massif            | Germany                   | Meissner et al. (1976a)                            |
| 623     | 1960       | Continental shelf                                    | West of Britain           | Bunce et al. (1964)                                |
| 623     | 1962ff     | Underwater explosions                                | British Isles and seas    | Bamford (1971)                                     |
| 623     | 1065       | NORSAR deep seismic sounding profiles                | Southern Norway           | Sellevoll (1973)                                   |
| 6.0.0   | 1067       | North San traverse                                   | Norway Saatland           | Serievoli (1975)                                   |
| 0.2.3   | 1000       | Continental margin project                           | Atlantia off Iroland      | Domford (1071)                                     |
| 0.2.3   | 1969       | Continental margin project                           | Atlantic off Ireland      | Damiloru (1971)                                    |
| 6.2.3   | 1969       | Rockall Plateau off Ireland                          | Atlantic of Ireland       | Scrutton (1972)                                    |
| 6.2.3   | 1969       | project                                              | Scandinavia               | vogel and Lund (1971)                              |
| 6.2.4   | 1961, 1962 | Lago Lagorai profiles                                | Eastern Alps              | Prodehl (1965)                                     |
| 6.2.4   | 1961–1967  | French Massif Central                                | France                    | Perrier and Ruegg (1973)                           |
| 6.2.4   | 1964       | Lago Bianco profiles                                 | Central Alps              | Giese and Prodehl (1976)                           |
| 6.2.4   | 1965       | Alpine quarry and construction blasts                | Western Alps              | Giese et al. (1967)                                |
| 6.2.4   | 1965–1968  | Puglia-Sicily                                        | South Italy               | Giese et al. (1973)                                |
| 6.2.4   | 1966       | Lac Negre underwater shots                           | Alps and Appenines        | Röwer et al. (1977)                                |
| 6.3     | 1963ff     | Deep seismic international profiles                  | Southeastern and eastern  | Sollogub et al. (1972)                             |
| 0.00    | 1000 1005  |                                                      | Europe                    | Output at al. $(1007)$                             |
| 0.3.2   | 1900-1905  | Centinuous profiling Targenuist Targenuist           |                           | Guterch et al. (1967)                              |
| 6.3.2   | 1965Π      | and Sudetes                                          | Poland                    | Ioporkiewicz (1986)                                |
| 6.3.2   | 1969       | International Profile V and VII                      | Poland                    | Uchman (1972)                                      |
| 6.3.2   | 1969       | International Profile V and VI                       | Czechoslovakia            | Beránek et al. (1972)                              |
| 6.3.2   | 1969       | International Profile VI                             | E Germany                 | Knothe and Schröder (1972)                         |
| 6.3.2   | 1969       | International Profile III, IV and V                  | Hungary                   | Mituch and Posgay (1972)                           |
| 6.3.2   | 1969       | International Profile III                            | Yugoslavia                | Prosen et al. (1972)                               |
| 6.3.2   | 1969       | International Profile II and X                       | Bulgaria                  | Dachev et al. (1972)                               |
| 6.3.2   | 1969       | International Profile II and XI                      | Romania                   | Constantinescu (1972)                              |
| 6.4     | 1960ff     | Deep seismic sounding profiles                       | USSR Europe and Asia      | Kosminskava et al. (1969)                          |
| 6.4     | 1963ff     | Deep seismic sounding profiles                       | Southwest USSB            | Sollogub and Chekunov (1972)                       |
| 651     | 1061       | USGS profiles in Colorado                            | Western United States     | lackson et al. (1963)                              |
| 6.5.1   | 1062 1062  | USGS California Novada profiles                      | Western United States     | Drodobl (1070)                                     |
| 0.5.1   | 1002-1903  | Tanta Faraat Array project Arizona                   | Southwest United States   | Morron (1000)                                      |
| 0.5.1   | 1904       | Tonio Forest Array project, Arizona                  | Sournwest United States   | Wallen (1969)                                      |
| 6.5.1   | 1965       | USGS Rocky Mountain profiles                         | Western United States     | Prodeni and Pakiser (1980)                         |
| 6.5.1   | 1965       | Kansas refraction line                               | Central United States     | Steeples and Miller (1989)                         |
| 6.5.1   | 1966       | LASA array deep seismic sounding project,<br>Montana | Northwest United States   | Warren et al. (1973)                               |
| 6.5.1   | 1967       | Coast Ranges deep seismic sounding,<br>California    | Western United States     | Walter and Mooney (1982)                           |
| 6.5.1   | 1969       | Wind River reflection, Wyoming                       | Western United States     | Perkins and Phinney (1969)                         |
| 6.5.2   | 1962ff     | Great Plains borehole shots profiles                 | Central United States     | Healy and Warren (1969)                            |
| 6.5.2   | 1963, 1964 | Lake Superior shots                                  | Canada and United States  | Mansfield and Evernden (1966)                      |
| 6.5.2   | 1965       | Cumberland Obs. Appalachians                         | Eastern United States     | Prodehl et al. (1984)                              |
| 6.5.2   | 1965       | East Coast Offshore-Onshore Experiment               | Eastern United States     | Hales et al. (1968)                                |
| 6.5.4   | 1964       | Near-vertical incidence seismic reflection           | Central Canada            | Kanasewich and Cumming (1965)                      |
| 654     | 1065       | studies                                              | Northoost Canada          |                                                    |
| 654     | 1066       | Vollowknife Saismie Arrey project                    | Northwest Canada          | Majabart and Whitham (1060)                        |
| 0.5.4   | 1900       | Rear Slove Churchill Presembrian                     | Northwest Canada          | Derey (1072)                                       |
| 0.5.4   | 1900       | Alaska Danga Tanang Dasin profile                    |                           | Derry (1973)                                       |
| 6.5.4   | 1967-1968  | Alaska Range—Tanana Basin profile                    | Central Alaska            | Hanson et al. (1968)                               |
| 6.5.4   | 1968       | Grenville Front seismic experiment                   | Eastern Canada            | Berry and Fuchs (1973)                             |
| 6.5.4   | 1969       | Yellowknife Seismic Array project                    | Northwest Canada          | Clee et al. (1974)                                 |
| 6.5.5   | 1965       | EARLY RISE Lake Superior 5-t shots                   | North America             | lyer et al. (1969); Masse (1973)                   |
| 6.5.5   | 1969       | EDZOE Upper mantle seismic project                   | Western North America     | Berry and Forsyth (1975)                           |
| 6.6     | 1963–1964  | Deep seismic sounding Kurayoshi-Hanasuba<br>profile  | Honshu, southwest Japan   | Research Group for Explosion<br>Seismology (1966b) |
| 6.6     | 1966–1967  | Deep seismic sounding Atumi-Noto profile             | Honshu, central Japan     | Aoki et al. (1972)                                 |
| 6.6     | 1968–1969  | Deep seismic sounding Shakotan-Erimo<br>profile      | Hokkaido, northeast Japan | Okada et al. (1973)                                |
| 6.6     | 1970       | Deep seismic sounding Kurayoshi-Hanasuba<br>profile  | Honshu, southwest Japan   | Yoshii et al. (1974)                               |
| 671     | 1959-1964  | Quarry blasts SW Western Australia                   | Australia                 | Everingham (1965)                                  |
| 671     | 1060       | Marina chote Parth Racin                             | Διιεταία                  | Hawking at al (1065)                               |
| 671     | 1060       | Marine shots off Parth                               | Australia                 | Hawking et al. (1903)                              |
| 671     | 1062       | Marine Shuts off Porth                               | Australia                 | Hawking et al. (1903)                              |
| 0.7.1   | 1062 1067  | Maine Shus On Feilin                                 | Australia                 | Mbito (1060)                                       |
| 0.7.1   | 1903-1967  | Quarty plasis, South Australia                       | Australia                 |                                                    |
| 0.7.1   | 190011     | Commuous deep renection promes                       | Australia                 | woss and Dooley (1988)                             |

### Chapter 2

TABLE 2.6. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1960S (continued)

| Chapter | Year       | Project                                           | Location                 | Reference                  |
|---------|------------|---------------------------------------------------|--------------------------|----------------------------|
| 6.7.1   | 1965       | Offshore shots off New South Wales                | Eastern Australia        | Cleary (1973)              |
| 6.7.1   | 1966       | CRUMP Offshore shots                              | North Australia          | Cleary (1973)              |
| 6.7.1   | 1966       | WRAMP Inland borehole shots                       | North Australia          | Cleary (1973)              |
| 6.7.1   | 1966       | BUMP Bass Street experiment                       | Southeast Australia      | Cleary (1973)              |
| 6.7.1   | 1967       | FRUMP Western Australia                           | Southwest Australia      | Finlayson (2010)           |
| 6.7.1   | 1968–1969  | Deep reflection experiments                       | Southwest Australia      | Moss and Dooley (1988)     |
| 6.7.1   | 1969       | Western Australia Geotraverse                     | Southwest Australia      | Mathur (1974)              |
| 6.7.1   | 1970       | ORD RIVER experiment                              | North Australia          | Denham et al. (1972)       |
| 6.7.2   | 1969       | First Kenya Rift Seismic Project                  | Kenya                    | Griffiths et al. (1971)    |
| 6.7.3   | 1968       | Peru-Bolivia Altiplano project                    | West South America       | Ocola and Meyer (1972)     |
| 6.7.4   | 1969       | 14th Soviet Antarctica Expedition                 | Antarctica               | Bentley (1973)             |
| 6.8.2   | 1950–1967  | Seismic reflection profiles, Atlantic and Pacific | Atlantic and Pacific     | Ewing and Ewing (1970)     |
| 6.8.2   | 1962       | "Arlis II" ice island drift Arctic                | Arctic Ocean             | Kutschale (1966)           |
| 6.8.2   | 1966       | "Meteor (1964)" expedition M04                    | Reykjanes Ridge          | Sarnthein et al. (2008)    |
| 6.8.2   | 1967       | Seamounts "Atlantic Kuppelfahrten"                | Northeast Atlantic       | Closs et al. (1968)        |
| 6.8.2   | 1968       | Mid-Atlantic Ridge at 45°N                        | Atlantic                 | Keen and Tramontini (1970) |
| 6.8.2   | 1969       | Gulf of Mexico upper mantle experiment            | Gulf of Mexico           | Hales (1973)               |
| 6.8.2   | 1969       | "Meteor (1964)" expedition M17                    | Mediterranean Sea        | Closs et al. (1972)        |
| 6.8.2   | 1969       | "Meteor (1964)" expedition M17                    | Arabian Sea              | Closs et al. (1969a)       |
| 6.8.2   | 1969       | "Meteor (1964)" expedition M18                    | Norwegian Sea            | Closs (1972)               |
| 6.8.2   | 1969       | Iceland–Faeroe Ridge                              | North Atlantic           | Bott et al. (1971)         |
| 6.8.3   | 1959, 1961 | Japanese Deep Sea Expedition                      | Japan trench             | Ludwig et al. (1966)       |
| 6.8.3   | 1960ff     | Oceanic seismic refraction lines                  | Indian and Pacific Ocean | Shor and Raitt (1969)      |
| 6.8.3   | 1963ff     | Kuril Islands–South Kamchatka                     | Western Pacific          | Kosminskaya et al. (1973)  |
| 6.8.3   | 1964, 1966 | Hawaii Big Island projects                        | Hawaii                   | Hill (1969)                |
| 6.8.3   | 1965       | Juan de Fuca and Gorda Ridges                     | Off Oregon-California    | Shor et al. (1968)         |
| 6.8.3   | 1965       | Cook Islands                                      | Pacific east of Fiji     | Hochstein (1968)           |
| 6.8.3   | 1965       | Philippine Sea                                    | West Pacific             | Murauchi et al. (1968)     |
| 6.8.3   | 1964ff     | Upper mantle anisotropy experiment                | East Pacific             | Raitt et al. (1971)        |
| 6.8.3   | 1966       | Northwest Pacific Basin                           | West Pacific             | Den et al. (1969)          |
| 6.8.3   | 1967       | Nova expedition Melanesian borderland             | West Pacific             | Shor et al. (1971)         |
| 6.8.3   | 1967       | Coral Sea—Queensland Basin                        | West Pacific             | Ewing et al. (1970)        |
| 6.8.3   | 1967, 1969 | Bismarck archipelago project                      | Northern Melansia        | Finlayson et al. (1972)    |
| 6.8.4   | 1962       | Central Indian Ridge                              | Northwest Indian Ocean   | Francis and Shor (1966)    |
| 6.8.4   | 1962       | Ninetyeast Ridge                                  | Southern Indian Ocean    | Francis and Raitt (1967)   |
| 6.8.4   | 1962       | Seychelles Bank                                   | Northwest Indian Ocean   | Shor and Pollard (1963)    |
| 6.8.4   | 1962       | Broken and Naturaliste Plateaus                   | Southeast Indian Ocean   | Francis and Raitt (1967)   |
| 6.8.4   | 1962       | Agulhas Bank and Transkei Basin                   | Southeast Indian Ocean   | Green and Hales (1966)     |
| 6.8.4   | 1962       | Southeast African continental margin              | Southwest Indian Ocean   | Ludwig et al. (1968)       |
| 6.8.4   | 1968       | Agulhas Bank and Plateau                          | Southern Indian Ocean    | Hales and Nation (1973)    |

as into the Bohemian Massif, the Carpathians, and the Dinarides (Sollogub et al., 1972).

In the territory of the USSR, not only the southwestern part was intensively investigated by deep-seismic sounding profiles, but many other projects dealt with detailed crustal structure investigations covering also the Asian part of the USSR, which culminated in some 215 crustal sections along deep-seismic sounding profiles of over 50,000 km length (Belyaevsky et al., 1973), the results of which could be compiled into a Moho map covering the whole USSR (Fig. 2.6-02).

In North America a major seismic refraction survey was started by the U.S. Geological Survey (Pakiser, 1963), but also several university projects dealt with seismic crustal research. The main target was the investigation of the crustal structure of the Basin and Range province in the west, which included the adjacent Sierra Nevada and Coast Ranges in the west and the Rocky Mountains and adjacent Great Plains in the east. Some areas in the central and the eastern United States were also investigated. On the basis of the numerous new data, gathered in the 1960s, Warren and Healy (1973) created fence diagrams of crustal cross sections throughout the United States and compiled a Moho map (Fig. 2.6-03).

Another focus became the Lake Superior region (Steinhart and Smith, 1966). The Lake Superior experiments which involved all major North American research institutions did not only comprise detailed crustal studies, but in particular the EARLY RISE project of 1965 opened another dimension by recording manmade events to distances of several thousand kilometers thus demonstrating that parts of the uppermost mantle could be systematically studied with controlled-source seismology. Another large cooperative project, EDZOE, covered much of Canada and aimed to study the structure of the North American Great Plains and the Rocky Mountains.

In Southeast Asia, from 1964 onwards, considerable progress was made in Japan in instrumentation and seismic fieldwork for crustal studies (Research Group for Explosion Seismology, 1966a). Some of the experiments were carried out under the Upper Mantle Project, providing first cross sections of Honshu Island (Aoki et al., 1972; Yoshii and Asano, 1972; Okada et al., 1973; Yoshii et al., 1974). From these data, it could be concluded History of Controlled-Source Seismology—A Brief Summary



Figure 2.6-01. Moho contour map of Europe (from Morelli et al., 1967, fig. 2). [Bolletino di Geofisica Teorica Applicata, v. 9, p. 142–157. Reproduced by permission of Bolletino di Geofisica, Trieste, Italy]



Figure 2.6-02. Moho contour map of the territory of the USSR (from Belyaevsky et al., 1973, fig. 1). [Tectonophysics, v. 20, p. 35–45. Copyright Elsevier.]





Figure 2.6-03. Moho contour map of the United States of America (from Warren and Healy, 1973, fig. 8). [Tectonophysics, v. 20, p. 203–213. Copyright Elsevier.]

that the northern part of the NE Japan arc is characterized by a low (~7.5 km/s) uppermost mantle velocity (Yoshii and Asano, 1972; Okada et al., 1973).

In Australia, several large-scale experiments provided first results on crustal thickness for southeastern and northern Australia (Denham et al., 1972; Cleary, 1973). Also, reflection profiling in basins in central and southeastern Australia provided strong reflections from the Moho (Dooley and Moss, 1988; Moss and Dooley, 1988; Finlayson, 2010; Appendix 2-2). In Africa, the first seismic investigation of the East African rift system was initiated by British scientists in Kenya (Griffiths et al., 1971). The very first explosion seismic investigation in South America concentrated on the Andes with a reconnaissance survey of the Peru-Bolivia Altiplano involving recording distances of 320–400 km (Ocola and Meyer, 1972).

At sea, all instruments in use in the 1950s and 1960s were essentially echo sounders utilizing pulses of low frequency sonic energy and a graphic recording system that displayed the data in the form of cross sections. The analysis methods, available also during the 1960s (Ewing, 1963a), used least-squares slopeintersect solutions for picked first arrivals, but did not allow for velocity gradients. Techniques and equipment for continuous seismic profiling were developed early in the 1960s, enabling studies of local variations in sediment thickness and details of its stratification. To eventually overcome the work with explosives, continuous research tried to develop efficient non-explosive energy sources (Ewing and Zaunere, 1964). On the basis of many observations in the Atlantic Ocean, a detailed overall picture of the oceanic crust was established but significant deviations from this average were found on the flanks of the Mid-Atlantic Ridge. Numerous new data were also gathered in the Indian and Pacific Ocean (Shor and Raitt, 1969). Detailed surveys involved, for example, the surroundings of the islands of Hawaii and archipelagos to the northeast of Australia (Furumoto et al., 1973). For the first time, the existence of seismic anisotropy of the uppermost mantle was discussed and investigated by a series of special anisotropy experiments in various areas of the Pacific Ocean (e.g., Raitt et al., 1971).

The 1960s accumulated a wealth of data, based on the integration of gradual improvement in seismic-refraction and -reflection techniques, instrumental development and the art of interpretation. In many experiments seismic energy produced by effective explosive sources was recorded out to large distances of several 100 km. Moho contour maps published for Europe (e.g., Morelli

et al., 1967; Fig. 2.6-01), the USSR (e.g., Belyaevsky et al., 1973; Fig. 2.6-02) and the United States (Warren and Healy, 1973; Fig. 2.6-03) were based on a large number of published models, available by the end of the 1960s. They not only resulted in a relatively complete picture of the gross velocity-depth structure of the Earth's crust underneath the northern hemisphere around the world, but also detected specific properties of different tectonic areas such as shields, platforms, orogens, basins, rift zones, etc. However, the long-range data had not yet been interpreted in terms of subcrustal fine structure. In order to understand the seismic wave field, various groups had worked on the theoretical background, so that by the end of the 1960s the art of computing synthetic seismograms was ready for application. Other groups had concentrated on the character and basic features of seismic phases so that gradually a fine structure of the hitherto homogeneously layered crust was detected. In particular the character of the crust-mantle boundary was attracting increased interest.

### 2.7. THE 1970s (1970-1980)

In the 1960s, the personnel situation in the geophysical departments of universities and other research institutions of western Europe had gained by public support of science, leading to an increase of existing facilities as well as to the foundation of new geophysical departments. By the beginning of the 1970s many young scientists had become professors and heads of departments.

With the powerful instrumentation developed in the 1960s and acquired in major numbers in the 1970s, in particular in western Europe, North America, and the USSR, controlledsource seismology approached new frontiers. The 1970s can be characterized by several highlights.

Making use of the rapidly developing new computing facilities, the traveltime routines of the 1960s enabled many different computer programs to be developed. They now allowed a faster interpretation of the large quantity of new data. Furthermore, the consequent application of the reflectivity method published by Fuchs and Müller (1971) enabled the calculation of synthetic seismograms for the full wave field in laterally homogeneous structures. By comparing observational and synthetic data, the models calculated by traveltime routines could now be improved and/or verified by including the amplitude information from the correlated phases. Braile and Smith (1975) published a whole series of synthetic record sections calculated for typical crustal models. The further development and application of the timeterm method widely used by British scientists to the data of dense networks of seismic-refraction profiles led unexpectedly to the detection of uppermost mantle velocity anisotropy under continents (Bamford, 1973; Bamford et al., 1979).

Underwater shots in the Lake Superior experiment of 1965 had shown that controlled seismic sources could efficiently be recorded to at least 2000 km distance if the recording conditions were favorable. In particular, it was recognized that the hitherto uniform  $P_n$  phase at distances of several hundred kilometers in reality consisted of a number of different phases reflected from various depth levels in the uppermost mantle. This enabled the seismic investigation of hitherto unknown depth ranges below the Moho and led to the detection of fine structures in the lower lithosphere down to 80-100 km depth. A considerable number of long-range profiles was subsequently organized and recorded throughout Europe (Fig. 2.7-01). One-thousand-km-long lines through France (Hirn et al., 1973, 1975), Britain (Faber and Bamford, 1979) and along the axis of the Alps (Alpine Explosion Seismology Group, 1976), and a 2000-km-long line through Scandinavia (Guggisberg and Berthelsen, 1987), for example, became well-known experiments (see also Fuchs et al., 1987). In the USSR, super-long profiles were recorded using nuclear devices as sources (Fig. 2.7-01). However, the data from these profiles did not become generally available until the early 1990s (Pavlenkova, 1996).

Japanese research activities in the 1970s were characterized by two programs. Big offshore shot experiments were carried out in 1974-1976 in the Pacific Ocean and the Sea of Japan and onshore seismic refraction surveys started in 1979 under the framework of the national project of earthquake prediction. The onshore activities were continued up to 2003, providing various scale crustal heterogeneities existing within NE and SW Japan arcs (e.g., Asano et al., 1981; Yoshii, 1994). In Australia, longterm recording devices had been developed (Finlayson, 2010; Appendix 2-2). A long-range seismic profile through the center of Australia recorded earthquakes from South East Asia and studied the upper mantle (Hales et al., 1980). Crustal profiles based mainly on quarry blasts investigated the crustal structure of Precambrian Shield in western Australia (Drummond 1979, 1981) and under the Lachlan Fold Belt in southeastern Australia (Finlayson et al., 1979). In southwest Africa, a large-scale seismic refraction experiment investigated the Damara orogen and the adjacent Kalahari craton, using the German MARS-66 equipment and long-term recording devices developed at the University of Johannesburg (Baier et al., 1983).

In the oceans, long-range profiles were recorded that penetrated well below Moho. In the Pacific Ocean, e.g., a 600-kmlong line was laid out in the northeastern Pacific between the Clarion and Molokai fracture zones (Orcutt and Dorman, 1977). In the western Pacific basin, explosions were recorded by oceanbottom seismometers up to distances of 1300 km during two Longshot experiments in 1973 in the East Mariana basin (Asada and Shimamura, 1976). From 1974 to 1980, intensive long-range experiments were undertaken in the northwestern Pacific, which detected large scale lithospheric structure and anisotropy in the upper-mantle (Asada and Shimamura, 1979; Asada et al., 1983; Shimamura et al., 1983). In the Atlantic Ocean, from 40° to 43°N a long-range profile was recorded near the Azores (Steinmetz et al., 1977), dealing also with the lower lithosphere. Another long-range seismic refraction experiment in 1977 established an 800 km long line along the southeastern flank of the Reykjanes Ridge which aimed to resolve both crust and upper mantle to greater depths than previously possible (RRISP Working Group,



Figure 2.7-01. World map showing long-range profiles until 1980 (from Fuchs et al., 1987, fig. 1). [*In* Fuchs, K., and Froidevaux, C., eds., Composition, structure and dynamics of the lithosphere-asthenosphere system: American Geophysical Union Geodynamics Series, v. 16, p. 137–154. Reproduced by permission of American Geophysical Union.]

1980). Figure 2.7-01 gives an overview, where in the world controlled-source seismic experiments were performed up to 1980 and which penetrated well below Moho (Prodehl, 1984).

Another highlight of the 1970s was an advanced understanding of rifting. Detailed studies were carried out in Europe in the central European Rift System through Germany and France (Prodehl et al., 1995; Fig. 2.7-02), along the Tornquist-Teysseire Zone in Poland (Guterch et al., 1983), in the Afro-Arabian rift system, in the western Jordan–Dead Sea transform, in the Afar triangle of Ethiopia (Ginzburg et al., 1979a; Berckhemer et al., 1975, see Fig. 2.9-02), and in North America in the Mississippi embayment (Mooney et al., 1983), the Rio Grande rift (Olsen et al., 1979) and the Yellowstone–Snake River Plain area, a suggested hot spot (Smith et al., 1982).

In several countries surrounding the Mediterranean, crustal studies were started in the 1970s such as in Portugal, Spain, Morocco, Greece, and Israel. In Italy, both the northern Apennines and adjacent Mediterranean Sea including the island of Corsica and southernmost Italy were the focus of several seismic land and sea investigations (e.g., Morelli et al., 1977).

Seismic near-vertical incidence reflection experiments were organized on a large scale for the first time in the 1970s. They covered distances of 100 km or more which brought new insight

into details of crustal structure and composition of the Earth's crust down to Moho. On the continents sedimentary basins and at sea the ocean basins had already been studied in much detail, the former by petroleum seekers since the 1930s and the latter by marine scientists largely during the decades following World War II. For the study of sedimentary basins, the seismic reflection profiling method had been highly developed over the years by the petroleum industry. Consequently, academic researchers now took advantage of the expertise, techniques, and equipment of the industry to study the whole crystalline crust and obtain not only geophysical models with velocity, density and attenuation, but also determine the extent and the configuration of reflecting horizons (Oliver, 1986). So, in the 1970s the first national largescale seismic-reflection programs were initiated. COCORP in the United States (e.g., Oliver et al., 1976), a purely seismic reflection program, was soon followed by the Canadian equivalent COCRUST (Mereu et al., 1989), which, however, comprised a combination of crustal reflection and refraction studies. Similar large-scale seismic near-vertical incidence reflection profiles, accompanied by wide-angle reflection observations, were recorded in Germany (Bartelsen et al., 1982; Meissner et al., 1980).

Besides special upper-mantle studies, detailed crustal research continued in the oceans. For the Pacific Ocean, for example,



Figure 2.7-02. Location map of explosion seismology surveys in the European Cenozoic rift system (ECRIS) until 1989 (from Prodehl et al., 1995, fig. 1). Double lines—seismic-reflection observations (numbers and letters denote DEKORP and other lines); single lines—seismic-refraction profiles (dots = shotpoints, EGT = European Geotraverse line of 1986). [*In* Olsen, K.H., ed., Continental rifts: evolution, structure, tectonics: Amsterdam, Elsevier, p. 133–212. Copyright Elsevier.]

Woollard (1975) reviewed the available data and published several cross sections with details of crustal structure. In the 1970s, the main interest of oceanic crust and upper mantle research had shifted from the investigation of crustal and upper mantle structure under ocean basins to special structures with anomalous properties such as mid-ocean ridges, hotspots, ocean islands and ocean-continent transition zones. The 1970s were also the decade when ocean-bottom seismometers (OBS) and oceanbottom hydrophones (OBH) were developed in various institutions and successfully tested in experiments around the world. From the numerous new investigations carried out in the 1970s, using airguns and expendable sonobuoys, a more detailed picture of the crust under the ocean basins was obtained. The application of the reflectivity method to calculate synthetic seismograms for deep-ocean data proved to be most powerful in unraveling details of the basement structure (Spudich and Orcutt, 1980). It was shown that the structure was better represented by velocity gradient zones than by discrete constant-velocity layers. There was also research work going on to determine if seismic anisotropy could be observed in the crust. Bibee and Shor (1976) investigated a large number of standard marine refraction studies and concluded that anisotropy in the crust was insignificant, but that mantle velocities, however, exhibited a high correlation with both age and azimuth, indicating an increase of velocity with age and ~5% anisotropy with the highest velocity in the direction perpendicular to the local magnetic anomalies. In OBS refraction experiments in the 1970s on the northern East Pacific Rise, a fast-spreading ridge, a localized low-velocity zone was detected for the first time (Orcutt et al., 1976; Minshull, 2002) which was interpreted as resulting from the presence of a magma chamber containing partially molten rocks. Other seismic studies in the 1970s were concentrated on the Mid-Atlantic Ridge, a slowspreading ridge. Here, early OBS refraction experiments found neither a low-velocity zone corresponding to magma chamber nor a strong velocity contrast at Moho depths. Instead, the crustmantle boundary was defined by a gradual increase in velocities (Fowler, 1976, 1978; Minshull, 2002).

Numerous other crustal studies were performed during the 1970s, leading to a large amount of crustal data available by 1980 (Fig. 2.7-03; for details, see Appendix 7-1). The main features of crustal and uppermost mantle studies available by the end the 1970s were compiled as tables giving details such as thicknesses of the whole crust, upper and lower crust and corresponding average velocities (Prodehl, 1984). An overview of the large number of major seismic projects undertaken in the 1970s around the world and mentioned in Chapter 7 can be seen in Table 2.7.

Fundamental for future decades were new steps undertaken both in theory and instrumental development. During the second half of the 1970s, the ray method was developed (Červený et al., 1977), which led to the development of several ray tracing methods which could handle data in complex tectonic structures and which would become the standard tool for interpreting seismic data in the 1980s and following decades up to the present day. Also other groups were writing synthetic seismogram routines on the basis of ray theory which were widely applied, for example, the program by McMechan and Mooney (1980) in the United States or the program by Spence et al. (1984) in Canada and elsewhere.

At the same time, J.H. Healy started to raise new interest in explosion seismology in the United States by developing a new type of equipment, later called the cassette recorders, which was ready for its first field test in Saudi Arabia in 1978. The Saudi Arabian long-range profile set new standards and laid the foundation for new activities in the following 1980s (Healy et al., 1982). This new system was small, was timed by a sophisticated clock



Figure 2.7-03. World map showing points where seismic data on crustal structure were available by 1980–1981 (from Prodehl, 1984, fig. 10). [*In* Hellwege, K.-H., editor in chief, Landolt Börnstein New Series: Numerical data and functional relationships in science and technology. Group V, Volume 2a: Fuchs, K., and Soffel, H., eds., Physical properties of the interior of the earth, the moon and the planets: Berlin-Heidelberg, Springer, p. 97–206. Reproduced with kind permission of Springer Science+Business Media.]

of high accuracy, was built in large quantities, could easily be operated by untrained personnel, and was able to record mostly automatically and run unattended for several days.

### 2.8. THE 1980s (1980-1990)

In the 1980s, the success of controlled-source seismology continued, but with increased interest into details of the crust. Computer programs for ray tracing, which had been developed in the 1970s and early 1980s, were now ready for applications. In contrast to the reflectivity method, ray theory enabled the interpretation of complicated structures in two or three dimensions, and therefore the interpretation of the fast-growing amount of data in crustal and upper mantle research work was carried out more and more by applying ray theory (Červený et al., 1977).

With these techniques, the requirement to obtain a denser data coverage, particularly in tectonically complicated regions, grew rapidly. The station spacing of 5 km or more for detailed crustal structure studies which had been regarded as sufficient up to the 1970s no longer suited the accuracy aimed for. In continental Europe, the MARS-66 analogue system, of which by the early 1980s ~200 units were available, experienced a late peak of magnetic-tape recording systems. Thus it became possible to decrease the station spacing to 2 km in most seismic-refraction experiments.

In North America, the 1980s saw a transformation in the development of new instrumentation. Here too it had also become clear that a station spacing of 5 km or more for detailed crustal structure studies was no longer sufficient. Smaller shotpoint and station spacings were required to achieve the scientific results needed. The development of the cassette recorders (Healy et al., 1982; Murphy, 1988; Appendix A7-5.6) at the U.S. Geological Survey at the end of the 1970s was the first attempt to fill this gap. This system provided a large number of easily maintained instruments with fast play-back facilities and led to an increasing number of fine-tuned experiments in North America. The increasing demand for more recording equipment sped up the developments of a new generation of recording units. It was in Canada where

# History of Controlled-Source Seismology-A Brief Summary

TABLE 2.7. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1970S

| Chapter | Year       | Project                                                                    | Location            | Reference                                                                                              |
|---------|------------|----------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------|
| 721     | 1071       | Crustal project France                                                     | France              | Sanin and Prodebl (1973)                                                                               |
| 7.2.1   | 1071       | Lower Lithosphere Project 1971                                             | France              | Him et al. (1973)                                                                                      |
| 7.2.1   | 1072       | Asthenosphere Project 1972                                                 | W-Europe            | Steinmetz et al. $(1973)$                                                                              |
| 7.2.1   | 1072       | Asthenosphere Project 1972                                                 | Franco              | Him at al. $(1075)$                                                                                    |
| 7.2.1   | 1070       | Lower Elinosphere vernication 1971                                         | Control Europo      | Edd at al. $(1975)$                                                                                    |
| 7.2.2   | 1072       | Bhônegraben project                                                        | South France        | Sapin and Hirn $(1973)$                                                                                |
| 7.2.2   | 1070 1072  | Southorn and Western Portugal                                              | Portugal            | Moroira et al. $(1077)$                                                                                |
| 7.2.3   | 1070       | ANNA Western Mediterraneen project                                         | Moditorronoon Soo   | NOTETIA et al. $(1977)$                                                                                |
| 7.2.3   | 1970       | Anna western Mediterranean project                                         | Ineulienanean Sea   | Colombi et al. $(1972)$                                                                                |
| 7.2.3   | 1971       | "Motoor (1064)" M22 Jonion Soo                                             | Grades              | $W_{\text{pirel}} (1074)$                                                                              |
| 7.2.3   | 1971       | Meteor (1904) M22 Ioman Sea                                                | Greece              | Weigel (1974)                                                                                          |
| 7.2.3   | 1971       | lolond of Croto project                                                    | Greece              | Makria and Vaca (1077)                                                                                 |
| 7.2.3   | 1072 1074  | Control Grocoo, Acadon Soc                                                 | Greece              | Makris (1077) $Makris (1977)$                                                                          |
| 7.2.3   | 1973-1974  | "Meteor (1964)" expedition M33                                             | Cretan Sea          | Makris et al. (1977)                                                                                   |
| 7.2.3   | 1974       | Northern Appenines to Corsica                                              | Italy-France        | Morelli et al. (1977)                                                                                  |
| 7.2.3   | 1074       | Long range project Ligurian Sea                                            | Mediterranean Sea   | Him at al. $(1977)$                                                                                    |
| 7.2.3   | 107/_1075  | Betic Cordillera long range                                                | Southern Spain      | Banda and Ansorge (1980)                                                                               |
| 7.2.3   | 1075       | Moroccan Meseta and Atlas                                                  | Morocco             | Makris et al. (1985)                                                                                   |
| 7.2.3   | 1975       | Balearic islands land-sea project                                          | Spain               | Banda et al. $(1900)$                                                                                  |
| 7.2.3   | 1076 1081  | Eastern Spain                                                              | Spain               | $Z_{\text{oven et al.}}$ (1985)                                                                        |
| 7.2.3   | 1077 1070  | Capary islands land-sea project                                            | Off North Africa    | Banda et al. $(1900)$                                                                                  |
| 7.2.3   | 1077 1080  | Betic Cordillera crust                                                     | South Spain         | Barranco et al. (1901a)                                                                                |
| 7.2.3   | 1079       | Buranaas saismia refraction lines                                          | Spain Franco        | Callart et al. (1990)                                                                                  |
| 7.2.3   | 1970       | "Meteor (1964)" expedition M50                                             | Ionian Sea          | Avedik et al. (1981)                                                                                   |
| 7.2.3   | 1070       | Long-range project Thyrrenian Sea                                          | Mediterranean Sea   | Steinmetz et al. (1983)                                                                                |
| 7.2.3   | 1979       | Lithospharic Seismic Profile through Britain, Crustal                      | British Islas       | $\begin{array}{c} \text{Stell Intel2 et al. (1900)} \\ \text{Bamford et al. (1976, 1978)} \end{array}$ |
| 1.2.4   | 1974       | Seismic Project Britain                                                    | DITUSITISTES        | Damoid et al. (1970, 1970)                                                                             |
| 7.2.4   | 1974       | Lithospheric Seismic Profile through Britain, Lower<br>Lithosphere Britain | British Isles       | Faber and Bamford (1979)                                                                               |
| 7.2.4   | 1976       | Lewisian Units Seismic Traverse                                            | British Isles       | Hall (1978)                                                                                            |
| 7.2.4   | 1977       | South Irish Sea Seismic Experiment Wales                                   | British Isles       | Ransome (1979)                                                                                         |
| 7.2.4   | 1979       | Western Isles Seismic Experiment offshore W Scotland                       | British Isles       | Summers et al. (1982)                                                                                  |
| 7.2.4   | 1975       | ALP75Alpine Longitudinal Profile                                           | Alps                | Miller et al. (1978)                                                                                   |
| 7.2.4   | 1977       | SÜDALP77                                                                   | Northern Italy      | Ansorge et al. (1979b)                                                                                 |
| 7.2.4   | 1979       | Institute of Geological Sciences, Wiltshire Survey                         | British Isles       | Kenolty et al. (1981)                                                                                  |
| 7.2.5   | 1973, 1975 | Hunsrück seism refl surveys                                                | West Germany        | Meissner et al. (1980)                                                                                 |
| 7.2.5   | 1974       | North German Basin hydrocarbon survey                                      | North Germany       | Yoon et al. (2008)                                                                                     |
| 7.2.5   | 1975–1976  | North German Plain                                                         | North Germany       | Reichert (1993)                                                                                        |
| 7.2.5   | 1976       | Northern Rhônegraben                                                       | France              | Ansorge and Mueller (1979)                                                                             |
| 7.2.5   | 1978       | Hunsrück-Eifel refraction line                                             | West Germany        | Meissner et al. (1983)                                                                                 |
| 7.2.5   | 1978       | Urach refraction seismics                                                  | Southwest Germany   | Jentsch et al. (1982)                                                                                  |
| 7.2.5   | 1979       | Urach reflection seismics                                                  | Southwest Germany   | Bartelsen et al. (1982)                                                                                |
| 7.2.6   | 1972       | Blue Road profile                                                          | Norway-Sweden       | Hirschleber et al. (1975)                                                                              |
| 7.2.6   | 1979       | Rhenish Massif long range project                                          | Germany-France      | Mechie et al. (1983)                                                                                   |
| 7.2.6   | 1979       | FENNOLORA Scandinavia crust                                                | Scandinavia         | Guggisberg et al. (1991)                                                                               |
| 7.2.6   | 1979       | FENNOLORA Scandinavia asthenosphere                                        | Scandinavia         | Guggisberg and Berthelsen (1987)                                                                       |
| 7.2.7   | 1970ff     | M1-M13 Fore-Sudetic seismics                                               | Poland              | Toporkiewicz (1986)                                                                                    |
| 7.2.7   | 1970ff     | LT2-LT5Tornquist-Teisseye Zone                                             | Poland              | Guterch (1977)                                                                                         |
| 7.2.7   | 1970ff     | Deep seismic international profiles                                        | Eastern Europe      | Guterch et al. (1991)                                                                                  |
| 7.2.7   | 1970ff     | Deep seismic international profiles                                        | Southeastern Europe | Radulescu et al. (1976)                                                                                |
| 7.3     | 1970ff     | Deep seismic sounding profiles                                             | Southwest USSR      | Sollogub et al. (1973)                                                                                 |
| 7.3     | 1972ff     | Deep seismic sounding Voronezh Shield                                      | Southwest USSR      | Tarkov and Basula (1983)                                                                               |
| 7.3     | 1970ff     | Deep seismic sounding crustal profiles USSR                                | Europe and Asia     | Zverev and Kosminskaya (1980)                                                                          |
| 7.3     | 1970ff     | Peaceful nuclear explosions asthenosphere USSR                             | Europe and Asia     | Egorkin and Pavlenkova (1981)                                                                          |
| 7.3     | 1977–1979  | Peaceful nuclear explosions athenosphere profiles                          | USSR                | Mechie et al. (1993)                                                                                   |
| 7.4.1   | 1971–1972  | Bingham, Utah–Wasatch Front                                                | Western USA         | Braile et al. (1974)                                                                                   |
| 7.4.1   | 1973       | Long Valley Caldera seismics                                               | Western USA         | Hill (1976)                                                                                            |
| 7.4.1   | 1976       | DICE THROW Rio Gande Rift                                                  | Western USA         | Olsen et al. (1979)                                                                                    |
| 7.4.1   | 1978       | Arizona Basin and Range province                                           | Western USA         | Sinno et al. (1981)                                                                                    |
| 7.4.1   | 1978, 1980 | Yellowstone–Snake River Plain                                              | Western USA         | Smith et al. (1982)                                                                                    |
| 7.4.2   | 1978–1979  | USGS seismic reflection, New Madrid                                        | Eastern USA         | Hamilton (1986)                                                                                        |
| 7.4.2   | 1979       | Imperial Valley, California                                                | Western USA         | Fuis et al. (1984)                                                                                     |
| 7.4.2   | 1979–1980  | Mississippi embayment reflections survey                                   | Central USA         | Mooney et al. (1983)                                                                                   |
| 7.4.3   | 1975ff     | COCORP                                                                     | USA                 | Brewer and Oliver (1980)                                                                               |
| 7.4.3   | 1975       | COCORP Hardeman County                                                     | Central USA         | Oliver et al. (1976)                                                                                   |
| 7.4.3   | 1975–1976  | COCORP Rio Grande Rift                                                     | Western USA         | Brown et al. (1979)                                                                                    |
| 7.4.3   | 1976       | COCORP San Andreas Fault project                                           | Western USA         | Long et al. (19                                                                                        |
| 7.4.3   | 1977       | COCORP Wind River Mountains                                                | Western USA         | Smithson et al. (1979)                                                                                 |

# Chapter 2

TABLE 2.7. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1970S (continued)

| Chapter    | Year       | Project                                                | Location              | Reference                                      |
|------------|------------|--------------------------------------------------------|-----------------------|------------------------------------------------|
| 743        | 1978       | COCOBP Michigan basin Michigan reflection survey       | Central USA           | Jensen et al. (1979)                           |
| 743        | 1078_1070  | COCORP S Appalachians GAA and GAB                      | Eastern LISA          | Cook et al. $(1979)$                           |
| 7.4.0      | 1070-1070  |                                                        | Eastern USA           | Cook et al. $(1979)$                           |
| 7.4.3      | 1970-1979  | COCORF Citaliesion-Georgia GAC/CRF                     |                       | Cook et al. (1979)<br>Brower and Oliver (1980) |
| 7.4.3      | 1979       |                                                        | Central USA           | Brewer and Oliver (1980)                       |
|            | 4070       | reflection survey                                      |                       |                                                |
| 7.4.3      | 1979       | COCORP Minnesota Archean Minnesota reflection          | Central USA           | Gibbs et al. (1984)                            |
|            |            | survey                                                 |                       |                                                |
| 7.4.3      | 1979       | USGS Grandfather Mountain Profile                      | Eastern USA           | Harris et al. (1981)                           |
| 7.4.4      | 1970       | Baffin Bay                                             | Canada                | Keen et al. (1972)                             |
| 7.4.4      | 1972–1973  | Cordillera seismic reflection profiles                 | Canada                | Berry and Mayr (1977)                          |
| 7.4.4      | 1977ff     | COCRUST Williston Basin                                | Canada                | Green et al. (1986)                            |
| 7.5.1      | 1971       | Dibouti crustal survev                                 | Diibouti              | Ruega (1975)                                   |
| 7.5.1      | 1972       | Afar crustal survey                                    | Ethiopia              | Berckhemer et al. (1975)                       |
| 752        | 1977       | Jordan–Dead Sea transform                              | Israel                | Ginzburg et al. (1979)                         |
| 752        | 1978       | Cyprus-Israel                                          | Israel                | Makris et al. (1983a)                          |
| 7.5.2      | 1070       | Saudi Arabia lithosphere                               | Saudi Arabia          | Mooney et al. (1985)                           |
| 7.5.2      | 1079       | Northorn Rod Soa, Equat                                | Equat                 | $\frac{1}{2}$                                  |
| 7.5.2      | 1070       | Zagraa Balt raaannaisaanaa                             | Цург                  | $C_{intropy} = c_{intropy} (1094)$             |
| 7.5.2      | 1970       | Zagros Beil reconnaissance                             |                       | Glese et al. $(1984)$                          |
| 7.6.1      | 1972-1975  | Deep seismic sounding S-India, Indian Shleid           | South India           | Kalla et al. (1979)                            |
| 7.6.1      | 1972#      | Deep seismic sounding N-India, Kashmir                 | North India           | Kaila et al. (1978)                            |
| 7.6.1      | 1970s      | Cambay basin                                           | India                 | Kaila et al. (1981a)                           |
| 7.6.1      | 1970s      | Koyna Dam                                              | India                 | Kaila et al. (1981b)                           |
| 7.6.2      | 1975–1977  | Tibetan plateau                                        | China                 | Teng (1987)                                    |
| 7.6.2      | 1978ff     | Qaidam basin, Yongping eplosions                       | China                 | Teng (1979); Yuan et al. (1986)                |
| 7.6.3      | 1975       | Shizuoka district, central Japan                       | Japan                 | Ikami (1978)                                   |
| 7.6.3      | 1976       | Western Kanto district                                 | Japan                 | Kaneda et al. (1979)                           |
| 7.6.3      | 1979       | Mishima-Shimoda profile. Izu peninsula                 | Central Japan         | Asano et al. (1982)                            |
| 763        | 1979       | Seismic intrusion detector onshore line Shikoku Island | Southwest Japan       | Ikami et al. (1982)                            |
| 7.0.0      | 1970_1971  | Deen reflection experiments                            | Australia             | Moss and Dooley (1988)                         |
| 7.7.1      | 1070       | Trans Australia solemia survov                         | Australia             | Finlaycon et al. (1974)                        |
| 7.7.1      | 1072       | Reven Resin Outpendend                                 | Australia             | Calling (1070)                                 |
| 7.7.1      | 1973       | Dowen Dasin, Queensianu                                | Eastern Australia     | Collins (1978)                                 |
| 7.7.1      | 1974-1975  | Flordiand South Island INZ                             | New Zealand           | Davey and Broadbent (1980)                     |
| 7.7.1      | 1975       | Long range earthquake profile                          | Central Australia     | Hales et al. (1980)                            |
| 7.7.1      | 1976-1978  | Lachlan Foldbelt, NewSouthWales                        | Eastern Australia     | Finlayson et al. (1979)                        |
| 7.7.1      | 1976–1978  | Deep seismic reflection experiments                    | Northeast Australia   | Mathur (1983)                                  |
| 7.7.1      | 1977, 1979 | Pilbara-Yilgarn craton projects                        | Northwest Australia   | Drummond (1979)                                |
| 7.7.1      | 1979       | Mount Isa–Tennant Creek profile                        | Central Australia     | Finlayson (1982)                               |
| 7.7.2      | 1975       | Damara orogen                                          | Namibia               | Baier et al. (1983)                            |
| 7.7.2      | 1975       | Damara orogen                                          | Namibia               | Baier et al. (1983)                            |
| 7.7.3      | 1973       | Narino III Pacific Ocean–Northern Andes                | Colombia              | Meyer et al. (1976)                            |
| 7.7.3      | 1976       | Cordilleras Northern Andes                             | Colombia              | Mooney et al. (1979)                           |
| 7.7.3      | 1978       | Cordilleras Northern Andes                             | Colombia              | Flueh et al. (1981)                            |
| 7.7.4      | 1979–1980  | Polish Antarctica expedition                           | West Antarctica       | Guterch et al. (1985)                          |
| 7.8.2      | 1970       | Northeast Pacific Ocean                                | Canada                | Keen and Barrett (1971)                        |
| 782        | 1970-1971  | <i>Vitiaz</i> " cruise no 49                           | Pacific               | Kosminskava et al. (1973)                      |
| 782        | 1972-1973  | Peru-Chile trench                                      | Pacific-Peru          | Hussong et al. (1976)                          |
| 7.8.2      | 1973       | Fast Panua crustal survey                              | Papua New Guinea      | Finlayson et al. (1977)                        |
| 7.8.2      | 1073_107/  | Cocos Plate east of East Pacific Rise                  | Pacific               | Lewis and Snydeman (1979)                      |
| 7.0.2      | 1072 1074  | Longshot Experiment off Japan                          | Pacific               | Acada and Shimamura (1976)                     |
| 7.0.2      | 1070 1076  | Mariana lang ranga aynarimanta                         | Facilic               | Asaua anu Shimamura (1970)                     |
| 7.8.2      | 1973, 1976 | Manana long range experiments                          | Japan                 | Nagumo et al. (1981)                           |
| 7.8.2      | 1974       | East Pacific Rise at Siqueiros Fracture Zone           | Pacific               | Orcutt et al. (1976)                           |
| 7.8.2      | 1974       | Offshore large shot experiment, Pacific                | Off Japan             | Okada et al. (1979)                            |
| 7.8.2      | 1976       | Offshore large shot experiment, Sea of Japan           | Off Japan             | Okada et al. (1978)                            |
| 7.8.2      | 1976       | 600 km long-range profile                              | Northeast Pacific     | Orcutt (1977)                                  |
| 7.8.2      | 1976       | Banda Sea                                              | North off Australia   | Jacobson et al. (1979)                         |
| 7.8.2      | 1976       | Timor Sea                                              | North off Australia   | Rynn and Reid (1983)                           |
| 7.8.2      | 1976       | Great Australian Bight                                 | South off Australia   | Talwani et al. (1979)                          |
| 7.8.2      | 1976       | Explorer Ridge W Vancouver                             | Canada                | Cheung and Clowes (1981)                       |
| 7.8.2      | 1976       | East Pacific Rise crest                                | Eastern Pacific       | Herron et al. (1978)                           |
| 782        | 1976 1978  | Hawaji Big Island projects                             | Hawaii                | $Z_{\rm ucca}$ et al. (1982)                   |
| 782        | 1977_1970  | Shirshov Institute of Oceanology world cruise          | Oceans                | Neprochnov (1989)                              |
| 780        | 1070       | Rivers Acean Sciemic Experiment (PASE)                 | East Pacific Rico     | Ewing and Mover (1092)                         |
| 790<br>297 | 1075       | Offeboro Sumatra                                       | Last 1 dollo MISE     | Living and Meyer (1902)                        |
| 1.0.0      | 19/0       |                                                        |                       | Tuebalke et al. (1900)                         |
| 1.8.3      | 19/8       | Aguinas Plateau<br>Madaman Didua Onerat Didi           | Southern Indian Ocean |                                                |
| 7.8.3      | 1978       | Madagascar Hidge, Crozet Plateau                       | Indian Ocean          | Goslin et al. (1981)                           |
| 7.8.4      | 1972       | NASP Iceland to Scotland                               | North Atlantic        | Bott and Gunnarson (1980)                      |
| 7.8.4      | 1973       | Mid-Atlantic Ridge at 37°N                             | Southeast of Azores   | Whitmarsh (1975)                               |
| 7.8.4      | 1974–1975  | Mid-Atlantic Ridge long range                          | North of Azores       | Steinmetz et al. (1977)                        |

### History of Controlled-Source Seismology-A Brief Summary

| Chapter | Year       | Project                                                    | Location         | Reference                                               |
|---------|------------|------------------------------------------------------------|------------------|---------------------------------------------------------|
| 7.8.4   | 1974       | "Meteor (1964)" expedition M33                             | Off West Africa  | Sarnthein et al. (2008)                                 |
| 7.8.4   | 1975       | "Meteor (1964)" expedition M39                             | Off West Africa  | Sarnthein et al. (2008)                                 |
| 7.8.4   | 1975       | Mid-Atlantic Ridge at 45°N                                 | Atlantic         | Fowler (1978)                                           |
| 7.8.4   | 1975       | Hebridean Margin Seismic Project                           | West of Scotland | Bott et al. (1979)                                      |
| 7.8.4   | 1975–1976  | OBS tests in Bay of Biscay                                 | West of France   | Avedik et al. (1978)                                    |
| 7.8.4   | 1976–1977  | OBS tests in Norwegian Sea–Blue Norma                      | West of Norway   | Avedik et al. (1978)                                    |
| 7.8.4   | 1976, 1978 | Spitsbergen expeditions                                    | Spitsbergen      | Sellevoll et al. (1982)                                 |
| 7.8.4   | 1977       | Kane fracture zone, Mid-Atlantic Ridge                     | Atlantic         | Detrick and Purdy (1980)                                |
| 7.8.4   | 1977       | "Meteor (1964)" expedition M46                             | Off West Africa  | Sarnthein et al. (2008)                                 |
| 7.8.4   | 1977       | Reykjanes Ridge at 60°30°W                                 | Atlantic         | Bunch (1980)                                            |
| 7.8.4   | 1977       | "Meteor (1964)" M45 Reykjanes Ridge                        | Atlantic         | Reykjanes Ridge Seismic Project<br>Working Group (1980) |
| 7.8.4   | 1977       | Reykjanes Ridge-Iceland Seismic Project                    | Iceland          | Reykjanes Ridge Seismic Project<br>Working Group (1980) |
| 7.8.4   | 1977–1978  | Eastern Canada margin                                      | Canada           | Keen and Barrett (1981)                                 |
| 7.8.4   | 1978       | Azores–Biscay rise                                         | Atlantic Ocean   | Whitmarsh et al. (1982)                                 |
| 7.8.4   | 1978       | Mid-Atlantic Ridge 45°N                                    | Atlantic         | White and Whitmarsh (1984)                              |
| 7.8.4   | 1978       | "Meteor (1964)" expedition M48                             | Iceland–Faeroe   | Sarnthein et al. (2008)                                 |
| 7.8.4   | 1979       | Long Island Platform marine multichannel seismic<br>survey | Eastern USA      | Hutchinson et al. (1986)                                |
| 7.8.4   | 1979ff     | Onshore-offshore reflection work                           | Eastern USA      | Behrendt (1986)                                         |

TABLE 2.7. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1970S (continued)

the first digital equipment, the Portable Refraction Seismograph (PRS1), was being developed by the Geological Survey of Canada and afterwards built by EDA Instruments Ltd. (Asudeh et al., 1992). By the end of the 1980s both in Canada and in the United States, not only had a large number of instruments become available, but also the age of digital recorders had started, pushed forward in particular by the foundation of LITHOPROBE in Canada and of IRIS/PASSCAL in the United States.

In Europe, three different approaches to detailed crustal studies were undertaken. First, crustal research in Europe received a new impulse from reflection seismology. Second, the European Geotraverse involved a large-scale seismic-refraction traverse. Third, continental deep drilling was accompanied by detailed reflection-refraction surveys.

Following the establishment of COCORP in the United States and COCRUST in Canada in the late 1970s, in Europe national groups such as BIRPS in Britain (Klemperer and Hobbs, 1991; see Fig. 8.3.1-01), DEKORP in Germany (Meissner et al., 1991a; see Fig. 8.3.1-07), or ECORS in France (Bois et al., 1986; see Fig. 8.3.1-03) were rapidly formed in the early 1980s. In Switzerland, Czechoslovakia, and Italy (CROP), similar research activities were initiated, and finally the multinational program BABEL investigating the Baltic Sea was born. Since 1985, the Australian Geological Survey Organisation (AGSO) has run a large program of deep seismic reflection surveys offshore and onshore Australia (Finlayson, 2010; Appendix 2-2). They all followed the ideas developed in the late 1970s by COCORP in North America to investigate the Earth's crust in great detail by applying vertical-incidence reflection work in a big style. In contrast to most of the early near-vertical incidence seismic reflection work in the 1950s and 1960s in Canada, Germany, the USSR, United States, and in Australia, the initiators of COCORP had hired a commercial reflection company for the field work and also applied their processing and interpretation techniques (Oliver et al., 1976) on the new data involving the whole crust. The same philosophy was now also applied by the initiators of the national European large-scale seismic reflection programs. All seismic reflection surveys accomplished by 1988 were compiled in a location map by Sadowiak et al. (1991) which is reproduced in Figure 2.8-01.



Figure 2.8-01. Location map of seismic reflection lines in western Europe observed until 1988 (from Sadowiak et al., 1991, fig. 1). [Geophysical Monograph 105, p. 45–54. Copyright John Wiley & Sons Ltd.]

### Chapter 2

In 1984, a series of international symposia on the seismic probing of the continents and their margins was started which in the beginning had the main focus to discuss large-scale seismic-reflection surveys and their impetus on our knowledge of the Earth's crustal structure (Barazangi and Brown, 1986a, 1986b; Matthews and Smith, 1987; Leven et al., 1990; Meissner et al., 1991a).

In the frame of the large-scale interdisciplinary project "European Geotraverse" (Fig. 2.8-02), covering a corridor through all major tectonic units of Europe from the North Cape to Tunisia, North Africa, a large-scale seismic-refraction survey was initiated (Ansorge et al., 1992). The seismic-refraction investigation was split into northern, central, and southern sections and was carried out over a period of several years. The Swiss national seismic reflection profile NFP20 through the central Alps was integrated into the EGT refraction observations (Valasek et al., 1991) and detected the European subduction under the Alps. Finally the Iberian Lithosphere Heterogeneity and Anisotropy (ILIHA) Project was designed as project no. 11 of the European Geotraverse, because only the Iberian peninsula had dimensions where large sea shots could be recorded up to 600–800 km distance on reversed long-range profiles on more or less homogeneous Hercynian crust.

The increasing interest in deep continental drilling and the search for suitable super-deep drill sites led to a variety of large-scale seismic-refraction and reflection surveys, particularly in Russia around the Kola super-deep drillhole and in central



Figure 2.8-02. Location map of the European GeoTraverse (from European Science Foundation, 1990, cover). [European Science Foundation, Strasbourg, 67 p. Reproduced by kind permission of the European Science Foundation, Strasbourg, France.]

Europe at two proposed drill sites in Germany, which partly coincided with the national reflection programs (Emmermann and Wohlenberg, 1989).

Besides BIRPS, other British projects in the 1980s investigated the North Sea, northern Britain, and the Irish Sea. The North Sea project involved both refraction and reflection work (Barton, 1986). The Caledonian Suture Seismic Project profile traversed northern Britain with shots in the North and Irish Seas (Bott et al., 1983) and stimulated the first seismic crustal profile through Ireland (Jacob et al., 1985). In addition to the seismic reflection profiling of BIRPS, a major seismic investigation followed using both land and sea profiling in and around Ireland (Landes et al., 2005).

In the USSR, the third period of Russian deep-seismic sounding investigations, which had started at the end of the 1970s, continued through the 1980s (Pavlenkova, 1996). The network of seismic profiles covered almost the whole territory of the USSR (Fig. 2.8-03). This seismic research included three-component magnetic recordings of shots of varying sizes recorded by up to 300 stations on profiles with 2500–3000 km length, involving both large conventional explosives and peaceful nuclear explosions (PNE).

In North America, COCORP continued its seismic-reflection program and many new areas were systematically covered (Brown et al., 1986; see Fig. 8.5.3-01). Furthermore, many seismic-refraction experiments were carried out. The new seismic-refraction equipment of the U.S. Geological Survey led to considerably increased activity, parallel to the efforts of COCORP. For example, a large-scale seismic-refraction experiment traversed the Basin and Range province, more or less parallel to the 40° COCORP survey (Catchings and PASSCAL Working Group, 1988). The goal of the PACE (Pacific to Arizona Crustal Experiment) project was to study the evolutionary history of metamorphic core complexes of the western Cordillera (McCarthy et al., 1991). New crustal data were collected in the southern Rio Grande rift area. In northeastern United States and adjacent Canada a seismic refraction/wide-angle reflection experiment crossed the northern Appalachians and the Adirondack Massif and ended in the Grenville province of the North American craton (Hughes and Luetgert, 1991). Braile et al. (1989) and Mooney and Braile (1989) summarized all seismic-refraction profiles, recorded in North America until ca. 1988 (Fig. 2.8-04).

The Canadian geophysical institutions subsequently formulated the joint programs COCRUST (Mereu et al., 1989; see



Figure 2.8-03. Location map of deep seismic sounding profiles in the USSR and locations of the peaceful nuclear explosions (PNE) (from Ryberg et al., 1998, fig. 1). [Journal of Geophysical Research, v. 103, p. 811–822. Reproduced by permission of American Geophysical Union.]





Figure 2.8-04. Location of seismic refraction surveys in Canada and the United States until 1988 (from Braile et al., 1989, fig. 1). For additional seismic profiles in Alaska, northern Canada and Mexico see Mooney and Braile (1989, fig. 1). [*In* Pakiser, L.C., and Mooney, W.D., eds., Geophysical framework of the continental United States: Geological Society of America Memoir 172, p. 655–680. Reproduced by permission of the Geological Society of America.]

also Fig. 8.5.2-01) and LITHOPROBE (e.g., Clowes, 1993) for a systematic crustal and uppermost-mantle investigation of the Canadian territory by a joint application of seismic-refraction and -reflection methodology. Most of the Canadian profiles are included in Figure 2.8-04. Furthermore, a seismic transect through Alaska, the Trans-Alaska Crustal Transect project (TACT; see Fig. 8.5.4-01), was undertaken in several steps from 1984 to 1990 (Plafker and Mooney, 1997).

The Afro-Arabian rift saw major activities of crustal research. Following the 1977 crustal investigation of the Jordan– Dead Sea transform in Israel (Ginzburg et al., 1979a), in 1984 a second survey explored the eastern part in Jordan (El-Isa et al., 1987a). The East African Rift in Kenya became the target of the first KRISP operation in 1985 (Henry et al., 1990). Most surveys, however, concentrated on the Red Sea area (for locations, see Fig. 2.9-02). Several symposia were held to report on the state of the art (e.g., Le Pichon and Cochran, 1988; Makris et al., 1991).

In India a total of 6000 km of long-range refraction and wide-angle reflection observations had been obtained by the end

of the 1980s by deep-seismic sounding surveys throughout India along 20 profiles (Mahadevan, 1994; see Fig. 8.7.1-01). The investigations aimed in particular on the deep structure of basins and rift systems, adopting continuous profiling over major portions of the deep-sounding profiles using geophone spacings of 200 m and shotpoint intervals of 20–40 km. Recordings with useful energy were obtained up to distances of 400 km.

In China, a major cooperative program between Chinese institutions and European and North American institutions was started. The first explosion seismology operation was a joint Sino-French study, which was carried out in Tibet investigating the Himalayan border and the adjacent Lhasa block to the north. A 500-km-long east-west line consisting of a system of reversed and overlapping profiles was recorded. For detailed crustal studies of whole of China, some 250 standardized instruments for deep-seismic sounding, recording on two-channel magnetic tape cassettes, were distributed among various research groups within China belonging to the State Seismological Bureau. Thus, in the 1980s a major activity of seismic research started (see Fig. 8.7.2-06) and has continued since then (Li and Mooney, 1998).

In Japan, onshore seismic crustal research in the 1980s was mainly carried out in the frame of the national Earthquake Prediction Program and focused on the upper crustal structure, searching particularly for major fault zones and tectonic lines (e.g., Ikami et al., 1986; Matsu'ura et al., 1991).

In Australia, several major seismic reflection surveys were undertaken (Finlayson, 2010; Appendix 2-2; see Fig. 8.8.1-03). For example, during 1980–1982 deep reflection data were obtained in the central Eromanga basin in southwestern Queensland. It resulted in 1400 km of traversing in a regional grid on continuous profiles up to 270 km long (Moss and Mathur, 1986). Following these successful studies, an Australian Continental Reflection Profiling Program (ACORP) was initiated and subsequently, in 1985, two major north-south–oriented deep seismic reflection surveys were conducted in central Australia acquiring 486 line kilometers across the Arunta block and the Amadeus basin (Wright et al., 1990).

Major activities of crustal seismic research started in South America, when in 1982 at the Free University of Berlin, Germany, a geoscientific interdisciplinary research group "Mobility of active continental margins" was established. Its main aim was the investigation of the Andes of Chile. Its funding enabled the recording of a number of onshore seismic-refraction lines up to distances of 260 km (see Fig. 8.8.3-01) in northern Chile and adjacent Bolivia and Argentina (Wigger et al., 1994). Energy was primarily obtained by using large quarry blasts of various copper mines, but also some self-organized borehole shots were added. Underwater shots fired by the Chilean navy close to the Chilean coast in the Pacific Ocean were also arranged.

With improved technology, extremely hostile climatic areas such as Antarctica became the focus of extensive seismic research projects. The Institute of Geophysics of the Polish Academy of Sciences undertook several expeditions to explore the structure underneath West Antarctica (Janik, 1997) beginning in 1979 and 1980 and continuing in 1984–1985 and 1987–1988 (see Fig. 8.8.4-01). McMurdo Sound at the southern end of the Ross Sea was the focus of the U.S. Louisiana State University to investigate the east-west boundary of the McMurdo Sound (McGinnis et al., 1985) with seismic refraction profiles in 1980 and 1981.

With advanced techniques, the number of marine seismic experiments carried out in the past three decades literally exploded. From the early 1980s onwards, large dynamic ranges and dense spatial sampling were targeted for the investigation of the crustal structure. For this reason experiments were designed for obtaining large offsets and large-aperture seismic refraction/wide-angle reflection data as well as near-vertical incidence reflections. In the 1980s, the development of non-explosive sources had become effective enough to be successfully recorded over long distance ranges of several 100 km at sea and also, in onshore-offshore experiments, on land. Of greatest importance for the advance of marine deep-seismic sounding was the fact that gradually over the years more and more ocean bottom seismographs came into use, giving much better signal-to-noise ratios than was possible to obtain with strings of hydrophones which suffered also from the noise produced by the moving towing ship.

A worldwide study of the lower crust and upper mantle using ocean bottom seismographs (OBS) and big airguns in the oceans was performed by the Shirshov Institute of Oceanology (Neprochnov, 1989) in the period from 1977 to 1984 (see Fig. 8.9.2-01). The North Atlantic Transect (NAT Study Group, 1985) provided a major improvement on the knowledge of the structure of the oceanic crust and its variability on a large regional scale. Other spectacular images of the internal structure of the oceanic crust were published by White et al. (1990). They showed widespread occurrence of intracrustal reflectivity in the western Central Atlantic Ocean The research project RAPIDS (Rockall and Porcupine Irish Deep Seismic) project of the Dublin Institute for Advanced Studies and partners consisted of two orthogonal wide-angle seismic profiles totaling 1600 km. The individual lines were typically 200-250 km long and produced a 1000-kmlong east-west seismic profile from Ireland to the Iceland Basin crossing various troughs, basins and intervening banks (e.g., Hauser et al., 1995).

Various projects dealt with the ocean-continent transition at continental margins. For example, seismic surveys were carried out in the vicinity of the northern Japan trench (Suyehiro and Nishizawa, 1994) or across the east Oman continental margin north of the Masirah Island ophiolite (Barton et al., 1990). An extended offshore marine survey targeted the crustal structure off Norway on the Voering plateau (Zehnder et al., 1990) and along the Lofoten margin (Mjelde et al., 1992). Detailed seismic investigations aimed for the deep structure in the transition zones west and north of Spitsbergen (Czuba et al., 1999) as well as eastern Greenland and its margin on the western side of the northernmost Atlantic Ocean (e.g., Mandler and Jokat, 1998). The 1981 Large Aperture Seismic Experiment (LASE) was one of the first experiments along the Atlantic continental margin of North America (e.g., Trehu et al., 1989b).

Only a few examples of research projects could be mentioned in this overview. A summary of all projects mentioned in Chapter 8 is compiled in Table 2.8.

A particular aspect of the new era of continental crustal research in the 1980s was the compatibility of results obtained either from the very detailed seismic-reflection projects or from the less dense seismic-refraction observations. In the beginning of COCORP, accompanying wide-angle piggyback experiments were rare. The different techniques and different frequency ranges of the seismic signals of near-incidence reflection research work and of wide-angle reflection profiling led to quite different presentations of crustal structure, and it took a while before the different philosophies were jointly discussed.

However, in central Europe as well as in Canada and Australia, close cooperation between the "reflection" and "refraction" groups started. The Canadian research programs COCRUST and LITHOPROBE involved the simultaneous use of both methods.

# Chapter 2

| TABLE 2.8. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 198 | 80S |
|-----------------------------------------------------------------------------------|-----|

|         | IADLE 2    |                                        | SINIC INVESTIGATIONS OF T |                                                            |
|---------|------------|----------------------------------------|---------------------------|------------------------------------------------------------|
| Chapter | Year       | Project                                | Location                  | Reference                                                  |
| 8.3.1.1 | 1980–1982  | IGS land reflection surveys            | British Isles             | Whittaker and Chadwick (1983)                              |
| 8.3.1.1 | 1981       | BIRPS MOIST line                       | Northwest British Isles   | Matthews and Cheadle (1986)                                |
| 8.3.1.1 | 1982       | SHELL UK82-101                         | North Sea                 | Klemperer and Hurich (1990)                                |
| 8.3.1.1 | 1982       | BIRPS WINCH lines                      | Northwest British Isles   | Matthews and Cheadle (1986)                                |
| 8.3.1.1 | 1983       | BIRPS-ECORS Southwest AT lines         | English Channel           | Matthews and Cheadle (1986)                                |
| 8.3.1.1 | 1983       | NOPEC SNST83-07                        | South North Sea           | Holliger and Klemperer (1990)                              |
| 8.3.1.1 | 1983       | North Sea BIRPS along SALI             | North Sea                 | Barton (1986)                                              |
| 8.3.1.1 | 1984       | BIRPS SHET (Sheltland survey)          | North Sea                 | McGeary (1987)                                             |
| 0.3.1.1 | 1964-1965  | BIRPS Notifi Sea Deep Ptollie          | Northwest of Ireland      | Mallinews and Cheadle (1966)                               |
| 0.3.1.1 | 1900       | BIRDS NEC (North East Coast line)      | North Soo                 | Erooman et al. (1988)                                      |
| 8311    | 1985       | BIRPS WAM                              | Southwest of Channel      | Peddy et al. (1980)                                        |
| 8311    | 1986-1987  | BIBPS GBID lines                       | North of Scotland         | Blundell and Docherty (1987)                               |
| 8.3.1.1 | 1987       | BIRPS SLAVE                            | ESP experiment            | Blundell and Docherty (1987)                               |
| 8.3.1.1 | 1987       | BIRPS WIRE                             | West of Ireland           | Blundell and Docherty (1987)                               |
| 8.3.1.1 | 1987       | BIRPS MOBIL                            | South North Sea           | Blundell and Docherty (1987)                               |
| 8.3.1.1 | 1988       | BIRPS WISPA                            | Onshore United Kingdom    | Ward and Warner (1991)                                     |
| 8.3.1.1 | 1990       | BIRPS WESTLINE                         | West of Ireland           | England (1995)                                             |
| 8.3.1.2 | 1983–1984  | ECORS Paris basin                      | Northern France           | Bois et al. (1986)                                         |
| 8.3.1.2 | 1984       | ECORS Aquitaine Basin N-S line         | France                    | Marillier et al. (1988)                                    |
| 8.3.1.2 | 1985ff     | ECORS Aquitaine Basin–Pyrenees         | France                    | ECORS Pyrenees team (1988)                                 |
| 8.3.1.2 | 1985ff     | ECORS Gulf of Biscay                   | France                    | Pinet et al. (1987)                                        |
| 8.3.1.2 | 1986–1987  | ECORS Bresse-Jura                      | France                    | Guellec et al. (1990)                                      |
| 8.3.1.3 | 1986       | CROP-ECORS Torino-Geneva               | Italy-France              | Scrocca et al. (2003)                                      |
| 8.3.1.3 | 1988       | CROP-NFP20 South-Central Alps          | Italy-Switzenand          | Scrocca et al. (2003)                                      |
| 0.3.1.3 | 1900       | VibroSois Swiss unfolded Jura          | Northorn Switzorland      | Scrocca et al. (2003)<br>Finale at al. (1986)              |
| 8314    | 1902       | NEP20 Swiss reflection line            | Switzerland               | Valasek et al. (1900)                                      |
| 8315    | 1984       | DEKORP-2 South Main-Danube line        | Southern Germany          | DEKOBP Besearch Group (1985)                               |
| 8.3.1.5 | 1984       | Black Forest reflection line           | Southwest Germany         | Lüschen et al. (1987)                                      |
| 8.3.1.5 | 1985       | DEKORP-4 KTB-Eastern Bavaria           | Southeastern Germany      | DEKORP Research Group (1988)                               |
| 8.3.1.5 | 1986       | DEKORP-2 North Rhenish Massif          | Western Germany           | Franke et al. (1990)                                       |
| 8.3.1.5 | 1987, 1988 | BELCORP-DEKORP-1 Rhen Massif           | Western Germany           | DEKORP Research Group (1991)                               |
| 8.3.1.5 | 1988       | DEKORP-9 N Northern Rhinegraben        | Southwest Germany         | Wenzel et al. (1991)                                       |
| 8.3.1.5 | 1988       | ECORS-DEKORP-9S South Rhinegr          | Southwest Germany         | Brun et al. (1991)                                         |
| 8.3.1.5 | 1989       | DEKORP 3-D survey KTB drill site       | Southeastern Germany      | Dürbaum et al. (1992)                                      |
| 8.3.1.5 | 1990       | DEKORP-3 and DEKORP-MVE                | Eastern Germany           | DEKORP Research Group (1994)                               |
| 8.3.1.6 | 1980s      | West Carpathians deep reflection lines | Czechoslovakia            | Tomek et al. (1987)                                        |
| 8.3.1.7 | 1989       | BABEL Baltic Shield                    | Baltic Sea                | BABEL WG (1991)                                            |
| 0.3.1./ | 1989       | BALIIC SEA profile                     | Ballic Sea                | Ostrovsky (1993)<br>Porton (1986)                          |
| 0.3.2   | 100-1901   | WISE offebore W Sectland               | Britich Islas             | $\frac{\text{Darton}(1900)}{\text{Summary of all (1082)}}$ |
| 832     | 1982       | CSSP Caledonian Suture                 | Northern England          | Bott et al. $(1982)$                                       |
| 832     | 1982       | ICSSP Caledonian Suture                | Ireland                   | Jacob et al. (1985)                                        |
| 8.3.2   | 1983       | " <i>Meteor</i> (1964)" expedition M66 | Skagerak                  | Behrens et al. (1986)                                      |
| 8.3.2   | 1984       | MAVIS Midland Valley Scotland          | British Isles             | Dentith and Hall (1990)                                    |
| 8.3.2   | 1985       | COOLE Caledonian onshore               | Ireland                   | Lowe and Jacob (1989)                                      |
| 8.3.2   | 1987       | BB87 North Sea–Ireland                 | Ireland                   | Bean and Jacob (1990)                                      |
| 8.3.3.1 | 1982       | Wildflecken fan profiles               | Southern Germany          | Zeis et al. (1990)                                         |
| 8.3.3.1 | 1984       | Black Forest wide-angle seismic        | Southwest Germany         | Gajewski and Prodehl (1987)                                |
| 8.3.3.1 | 1984       | Black-Zollern-Forest wide-angle seism  | Southwest Germany         | Gajewski et al. (1987)                                     |
| 8.3.3.2 | 1985       | KTB wide angle seismics                | Southeastern Germany      | Gebrande et al. (1989)                                     |
| 8.3.4.1 | 1981       | EGT SVEKA wide-angle profile           | Central Finland           | Luosto et al. (1984)                                       |
| 8.3.4.1 | 1981-1983  | Kola peninsula seismic profiles        | Northwest Russia          | Azbel et al. (1989)                                        |
| 0.3.4.1 | 1982       | DALTIC wide-angle profile              | Southeastern Finland      | Luosto and Kornonen (1986)<br>Robrons et al. (1986)        |
| 0.0.4.1 | 1903       | Tornaujet-Tovesoire Zono               | Denmark-Swadan            | $EIIGENO_S WG (1990)$                                      |
| 0.0.4.1 | 1904       | POLAR wide-ande profile                | Finland-Norway            | Luceto et al (1980)                                        |
| 8342    | 1981 1984  | Northern German Basin bydrocarbon      | Northern Germany          | Yoon et al. (2008)                                         |
| 0.0.4.2 | 1001, 1004 | survey                                 |                           |                                                            |
| 8.3.4.2 | 1983       | EGI N-Appenines crustal profiles       | Northern Italy            | Biella et al. (1987)                                       |
| 8.3.4.2 | 1986       | EGI central segment                    | Germany-Italy             | Aichroth et al. (1992)                                     |
| 0.3.4.2 | 1987       | Alpine wide-angle profiles             | Switzeriand               | $\frac{10000}{10000}$                                      |
| 0.3.4.3 | 1903       | EGT Southern Section Corsica-Sardinia  | western italy             |                                                            |

| TABLE 2.8. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1980S (continued) |
|-------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------|

| Chapter | Year       | Project                                               | Location                       | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|------------|-------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.3.4.3 | 1985       | EGT southern segment Tunisia                          | Tunisia                        | Research Group for Lithospheric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8343    | 1983 1986  | Atlas and Anti Atlas crust                            | Morocco                        | Wigger et al. (1992)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8344    | 1980 ff    | Northwest corner of Iberia                            | Snain                          | Cordoba et al. (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8344    | 1988       | Valencia Trough                                       | Spain                          | Pascal et al. (1992): Torné et al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0.4.4 | 1300       |                                                       | opani                          | (1992)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.3.4.4 | 1989       | Valencia Trough                                       | Spain                          | Danobeitia et al. (1992)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.3.4.4 | 1989       | EGT ILIHA long range lines                            | Spain and Portugal             | ILIHA DSS Group (1993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.3.5   | 1983–1985  | West Carpathians reflection lines                     | Czechoslovakia                 | Tomek et al. (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.3.5   | 1986       | LT-7 Tornquist-Teisseyre Zone                         | Northwest Poland               | Guterch et al. (1991b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.3.5   | 1987       | GB2 near-vertical recording                           | Northwest Poland               | Guterch et al. (1991a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.4     | 1981–1988  | Crustal data on PNE lines                             | USSR                           | Egorkin et al. (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.4     | 1981–1988  | PNE athenosphere profiles                             | USSR                           | Mechie et al. (1993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.4     | 1981, 1983 | Mirnyi kimberlite field in Siberia                    | USSR                           | Suvorov et al. (2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.5.2   | 1980       | COCRUST Vancouver Island project                      | Western Canada                 | Green et al. (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.5.2   | 1981       | COCRUST Williston Basin                               | Central Canada                 | Hajnal et al. (1984)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.5.2   | 1982       | COCRUST Bonnechere-Grenville                          | Southeastern Canada            | Mereu et al. (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.5.2   | 1984       | COCRUST Kapuskasing                                   | South-central Canada           | Mereu et al. (1989)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.5.2   | 1984       | LITHOPROBE Vancouver Island                           | Western Canada                 | Green et al. (1990a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.5.2   | 1984-1985  | LITHOPROBE LE off Newfoundland                        | Southeastern Canada            | Mariller et al. (1994)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.5.2   | 1984-1988  | Canadian Arctic ice shelf project                     | Northern Canada                | Forsyth et al. (1990)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.5.2   | 1985       | LITHOPROBE Vancouver on-offshore                      | Western Canada                 | Clowes et al. (1987b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.5.2   | 1985       | COCRUST Peace River Arch                              | Northwest Canada               | Stephenson et al. (1989)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.5.2   | 1985       | LITHOPROBE Cordillera reflection                      | Western Canada                 | Cook et al. (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8.5.2   | 1986       | CDAD 00 Optonia Navy York                             | South-central Canada           | Green et al. (1989)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.5.2   | 1988       | GRAP-88 Untario-New York                              | Southeastern Canada            | Mariller et al. (1994)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.3.2   | 1969       |                                                       | Soumeastern Canada             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0.2   | 1989-1990  | COCOPP Adirondook New England                         | Northogotorn United States     | Clowes et al. (1995)<br>Brown et al. (1982a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0.3.1 | 1980-1981  | Longo Diver corrider Virginia                         | Nonneastern United States      | Drown et al. $(1983a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0.0.1 | 1001       | COCOPP Kapaga reflection our ov                       | Control United States          | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ |
| 0.0.0.1 | 1901       |                                                       | South control United States    | Noloon et al. (19650)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.5.5.1 | 1001       | USCS Carolina Coorgia GAC CHP                         | South-certifial Officed States | Rebrandt (1086)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.5.5.1 | 1001 1005  | USGS Calolina-Geolgia GAC-CITF                        | Western United States          | $Z_{\rm LOC2}$ of al. (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8531    | 1082       | COCORP west-central Litah                             | Western United States          | Allmondinger et al. (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8531    | 1982       | USGS Central California reflection                    | Western United States          | Hamilton (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0.0.1 | 1302       | survey                                                | Western Onned Otales           | Hamilton (1999)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.5.3.1 | 1982–1983  | Mono Craters–Long Valley refraction<br>lines          | Western United States          | Hill et al. (1985)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8.5.3.1 | 1982–1984  | COCORP 40°N Transect                                  | Western United States          | Allmendinger et al. (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.5.3.1 | 1983       | USGS Maine–N Appalachians reflection<br>survey        | Northeastern United States     | Hamilton (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.5.3.1 | 1983–1985  | COCORP Georgia-Florida Transect                       | Southeastern United States     | Nelson et al. (1985)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.5.3.1 | 1984       | COCORP Northwest Cordillera                           | Northwest United States        | Potter et al. (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.5.3.1 | 1984       | USGS Newark Basin rift tectonics                      | Eastern United States          | Ratcliffe et al. (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8.5.3.1 | 1984       | USGS Alaska pipeline reflect survey                   | Alaska                         | Hamilton (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.5.3.1 | 1985       | COCORP Death Valley                                   | Western United States          | de Voogd et al. (1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.5.3.1 | 1985       | USGS Southern California–Arizona<br>reflection survey | Western United States          | Hamilton (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.5.3.1 | 1985       | ADCOH site study ADC                                  | Eastern United States          | Coruh et al. (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.5.3.1 | 1986       | COCORP Arizona PACE line                              | Western United States          | Hauser et al. (1987a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.5.3.1 | 1987       | COCORP Montana plains                                 | Northwest United States        | Latham et al. (1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.5.3.2 | 1980–1981  | USGS Western Mojave desert                            | Western United States          | Harris et al. (1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.5.3.2 | 1980–1982  | USGS Livermore–Santa Cruz Mountains                   | Western United States          | Williams et al. (1999)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.5.3.2 | 1982       | USGS Great Valley Californa                           | Western United States          | Walter and Mooney (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.5.3.2 | 1982–1983  | USGS Morro Bay, California                            | Western United States          | Murphy and Walter (1984)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.5.3.2 | 1982–1983  | USGS Long Valley Caldera                              | Western United States          | Meador et al. (1983, 1985)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.5.3.2 | 1983       | USGS Coalinga, California, refraction<br>lines        | Western United States          | Walter (1990)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.5.3.2 | 1984       | USGS Columbia Plateau, Oregon                         | Western United States          | Catchings and Mooney (1988a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.5.3.2 | 1984       | USGS Newberry Volcano, Oregon                         | Western United States          | Catchings and Mooney (1988a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.5.3.2 | 1986       | USGS San Luis Obispo, California                      | Western United States          | Sharpless and Walter (1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8.5.3.2 | 1986       | PG&E EDGE Central California margin                   | Western United States          | Howie et al. (1993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.5.3.2 | 1989       | Cascade Mountains off-onshore project                 | Western United States          | Trehu and Nakamura (1993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8.5.3.3 | 1980–1982  | Yucca Mountain, Nevada                                | Western United States          | Hoffman and Mooney (1983)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# Chapter 2

TABLE 2.8. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1980S (continued)

|                | 17 (BEE 2.0. 10) | CONTROLLED COOTICE CEICINIC IN                                     | VECTION THE OTION          |                                                   |
|----------------|------------------|--------------------------------------------------------------------|----------------------------|---------------------------------------------------|
| Chapter        | Year             | Project                                                            | Location                   | Reference                                         |
| 8.5.3.3        | 1988             | Yucca Mountain, Nevada                                             | Western United States      | Brocher et al. (1990)                             |
| 8.5.3.3        | 1980–1983        | Southern Rio Grande Rift                                           | Western United States      | Sinno et al. (1986)                               |
| 8.5.3.3        | 1981             | CARDEX Valles Caldera, New Mexico                                  | Western United States      | Ankeny et al. (1986)                              |
| 8.5.3.3        | 1985, 1987       | CALCBUST PACE, California–Arizona                                  | Western United States      | McCarthy et al. (1991)                            |
| 8533           | 1986             | PASSCAL Basin & Bange province                                     | Western United States      | Whitman and Catchings (1987)                      |
| 0.0.0.0        | 1000             | Nevada                                                             | Western Onited Otates      | Whithan and Oatonings (1007)                      |
| 8533           | 1989             | PACE Colorado Plateau                                              | Western United States      | McCarthy et al. (1994)                            |
| 8534           | 1983             | Canadian part Quebec-Maine reflection                              | Southeastern Canada        | Stewart et al. (1986)                             |
| 0.5.5.4        | 1900             | Survey                                                             | Southeastern Ganada        | Stewart et al. (1900)                             |
| 8531           | 108/             | USGS Maine refraction survey OMT                                   | Eastern United States      | Spancer et al. (1989)                             |
| 9524           | 1095             | USGS Maine refraction survey QMT                                   | Eastern United States      | Luctaart at al. (1903)                            |
| 9524           | 1000             | Adirondack Gronvillo refraction line                               | Northoastorn United States | $1000 \downarrow uotaort at al (1000)$            |
| 0.5.5.4        | 1004 105         | Southorn Alooko                                                    | Alaska                     | Fuis et al. (1991)                                |
| 0.3.4          | 1904-190         | Alaska Danga Vukan Divar                                           | Alaska                     | Puis et al. (1991)<br>Breachar et al. (2004a)     |
| 0.3.4          | 1907             | Alaska hallye-fukuli nivel<br>Dringe William Sound, Cult of Alaska | Alaska                     | Brocher et al. (2004a)                            |
| 0.5.4          | 1966             | Prince William Sound–Guil of Alaska                                | Alaska                     | Diocher et al. (1991a)                            |
| 8.5.4          | 1990             | Brooks Range, northern Alaska                                      | Alaska                     | Fuls et al. (1997)                                |
| 8.6.1          | 1981             | Northern Red Sea-Egypt                                             | Egypt                      | Rinm et al. (1991)                                |
| 8.6.1          | 1984             | Jordan–Dead Sea transform refraction                               | Jordan                     | El Isa et al. (1987a)                             |
| 8.6.1          | 1984             | Jordan–Dead Sea transform reflection                               | Israel                     | Rotstein et al. (1987)                            |
| 8.6.1          | 1986             | Gulf of Suez–Northern Red Sea                                      | Red Sea                    | Gaulier et al. (1988)                             |
| 8.6.1          | 1988             | Red Sea–Sudan and Red Sea–Yemen                                    | Red Sea                    | Egloff et al. (1991)                              |
| 8.6.2          | 1985             | KRISP85 East African Rift                                          | Kenya                      | Henry et al. (1990)                               |
| 8.7.1          | 1980–1988        | Multichannel reflection lines                                      | India                      | Mahadevan (1994)                                  |
| 8.7.2          | 1981–1982        | Sino-French exploration Tibet                                      | China                      | Hirn and Sapin (1984)                             |
| 8.7.2          | 1981–1982        | Tibetan plateau                                                    | China                      | Teng (1987)                                       |
| 8.7.2          | 1980–1986        | Seismic refraction surveys                                         | Eastern China              | Li and Mooney (1998)                              |
| 8.7.2          | 1982             | Yunnan Province, Southwest China                                   | Southwest China            | Kan et al. (1986)                                 |
| 8.7.2          | 1988             | Altai Mountains–Altyn Tagh Fault                                   | Northwest China            | Wang et al. (2003)                                |
| 8.7.3          | 1980             | Ito-Matsuzaki Profile, Izu Peninsula                               | Central Japan              | Yoshii et al. (1985)                              |
| 8.7.3          | 1981             | DSS in and around Nagano prefecture                                | Central Japan              | Ikami et al. (1986)                               |
| 8.7.3          | 1982             | DSS Nagano and Yanamashi                                           | Central Japan              | Sasatani et al. (1990)                            |
|                |                  | prefectures                                                        | ·                          |                                                   |
| 8.7.3          | 1984             | Niikappu-Samani line, Southwest Hok-<br>kaido                      | Northern Japan             | Iwasaki et al. (1998)                             |
| 8.7.3          | 1985             | Haruno-Tsukude profile, Honshu                                     | Central Japan              | Matsu'ura et al. (1991)                           |
| 8.7.3          | 1988             | DSS Kii peninsula                                                  | Southwest Japan            | Research Group for Explosion<br>Seismology (1992) |
| 8.7.3          | 1989             | Fujihashi–Kamigori, W Honshu                                       | Japan                      | Research Group for Explosion<br>Seismology (1995) |
| 8.7.3          | 1990             | Kitakami Massif refraction line                                    | Japan                      | Iwasaki et al. (1994)                             |
| 8.8.1          | 1980-1982        | Eromanga Basin, Queensland                                         | Australia                  | Finlayson et al. (1989)                           |
| 8.8.1          | 1982–1983        | Central Volcanic Region North Island                               | New Zealand                | Stern (1985)                                      |
| 8.8.1          | 1983             | Yilgarn craton projects                                            | Northwest Australia        | Drummond (1988)                                   |
| 8.8.1          | 1983             | Central South Island                                               | New Zealand                | Smith et al. (1995)                               |
| 8.8.1          | 1984             | Eromanga–East Coast, Queensland                                    | Australia                  | Finlayson et al. (1989)                           |
| 8.8.1          | 1984             | New England batholith traverse                                     | East Australia             | Finlayson and Collins (1993)                      |
| 8.8.1          | 1984             | Hikurangi zone N Island–Pacific                                    | New Zealand                | Davey et al. (1986)                               |
| 8.8.1          | 1985             | AGSO reflection central Australia                                  | Australia                  | Wright et al. (1990)                              |
| 8.8.1          | 1985             | Hikurangi zone south of N Island                                   | New Zealand                | Davey (1987)                                      |
| 8.8.1          | 1987-1989        | l achlan orogen                                                    | Fast Australia             | Finlayson (2010)                                  |
| 881            | 1989             | Bowen Basin–New England Orogen                                     | East Australia             | Korsch et al. (1992)                              |
| 881            | 1989             | Hikurangi zone Southwest of N Island                               | New Zealand                | Davey and Stern (1990)                            |
| 882            | 1982             | Whitwatersrand refraction lines                                    | South Africa               | Durrheim (1986)                                   |
| 882            | 1988             | Whitwatersrand 112 km reflection line                              | South Africa               | Durrheim et al. (1991)                            |
| 882            | 1087_1088        | Reconnaissance seismic survey                                      | Botewana                   | Wright and Hall (1990)                            |
| 883            | 1082_108/        | Chuquicamata mine profiles Andes                                   | Chile-Bolivia              | Wigger (1986)                                     |
| 8.8.3          | 1987–1989        | Mine blasts and ocean shots Andean                                 | Chile-Bolivia              | Wigger et al. (1994)                              |
| 884            | 1981_1982        | McMurdo Sound Ross Sea                                             | Antarctica                 | McGinnis et al. (1985)                            |
| 884            | 1984_1985        | Bransfield Strait Polish Expedition                                | Western Antarctica         | Janik (1997)                                      |
| 884            | 1087_1088        | Branefield Strait Polich Expedition                                | Western Antarctica         | lanik (1997)                                      |
| 802            | 1001-1900        | luan da Fuca Ridaa                                                 | Northeast Pacific          | Morton et al (1087)                               |
| 0.J.Z<br>8 0 2 | 1081_1090        | Tohuku subduction zono                                             | Fact off Janan             | Suvehiro and Nichizowa (1004)                     |
| 8.9.2          | 1979ff           | Refraction around ODP hole 504B                                    | Costa Rica rift            | Detrick et al. (1994)                             |

| 2 | 2 |
|---|---|
| Э | Э |
|   |   |

|         | 17 (BEE 2:0: 10) | CONTROLLED COOTICE CEICIMIC II                   |                                     |                                       |
|---------|------------------|--------------------------------------------------|-------------------------------------|---------------------------------------|
| Chapter | Year             | Project                                          | Location                            | Reference                             |
| 8.9.2   | 1982             | Shirshov Institute of Oceanology world           | Northern Pacific Ocean              | Neprochnov (1989)                     |
| 892     | 1982             | Hawaijan–Emperor Seamount chain                  | Central Pacific                     | Watts et al. (1985)                   |
| 802     | 1082             | MAGMA East Pacific Rise                          | East Pacific                        | Oroutt et al. (1984)                  |
| 0.9.2   | 1002 1004        | Valu Eo Didao Lou Pooin                          | Southwoot Pooific                   | Morton and Sloop (1095)               |
| 0.9.2   | 1982, 1984       | Valu Fa Riuge, Lau Dasiri                        |                                     | Notion and Sleep (1985)               |
| 8.9.2   | 1983             | Ngendel expedition south Pacific                 | South Pacific                       | Shearer and Orcutt (1985)             |
| 8.9.2   | 1985             | East Pacific Rise 8°50 N to 13°30 N              | East Pacific                        | Detrick et al. (1987)                 |
| 8.9.2   | Mid-1980s        | Juan de Fuca Ridge                               | East Pacific                        | Rohr et al. (1988)                    |
| 8.9.2   | 1985–1989        | Australian margins marine deep<br>seismics       | Southern and eastern Aus-<br>tralia | Finlayson (2010)                      |
| 8.9.2   | 1989             | Tasmania margin and Southern Ocean               | Off western Tasmania                | Finlayson (2010)                      |
| 8.9.2   | 1988             | East Pacific Rise at 9°30                        | East Pacific                        | Toomey et al. (1990)                  |
| 8.9.2   | 1989             | Society Island Hotspot Chain                     | Pacific Ocean                       | Grevemever et al. (2001b)             |
| 8.9.2   | 1990             | Juan de Fuca Ridge                               | Northeast Pacific                   | Mcdonald et al. (1994)                |
| 8.9.3   | 1984             | Shirshov Institute of Oceanology world<br>cruise | Indian Ocean                        | Neprochnov (1989)                     |
| 8.9.3   | 1985             | Agulhas Bank off South Africa                    | Indian Ocean                        | Durrheim (1987)                       |
| 893     | 1985             | Kerquelen Plateau                                | Indian Ocean                        | Bamsay et al. (1986)                  |
| 803     | 1086             | Owen Basin off Oman                              | Indian Ocean                        | Barton et al. (1990)                  |
| 0.0.0   | 1096             | Exmouth Platoau                                  | Off Northwest Australia             | Muttor of al. (1090)                  |
| 0.9.3   | 1900             | EXITOUITI Flateau                                |                                     | Finleware (0010)                      |
| 8.9.3   | 1986             | North Perth Basin                                | Off Western Australia               | Finlayson (2010)                      |
| 8.9.3   | 1988             | South Perth Basin                                | Off Western Australia               | Finlayson (2010)                      |
| 8.9.4   | 1980s            | North Atlantic Transect near 23°N                | North Atlantic                      | NAT StudyGroup (1985)                 |
| 8.9.4   | 1981             | LASE Baltimore Cyn                               | North American Atlantic<br>margin   | LASE StudyGroup (1986)                |
| 8.9.4   | 1982             | Kane fracture zone, Mid-Atlantic Ridge           | Atlantic                            | Cormier et al. (1984)                 |
| 8.9.4   | 1982             | Charlie-Gibbs Fracture Zone                      | North Atlantic                      | Whitmarsh and Calvert (1986)          |
| 8.9.4   | 1982             | Tydeman Fracture Zone                            | North Atlantic                      | Calvert and Potts (1985)              |
| 8.9.4   | 1983             | Shirshov Institute of Oceanology world<br>cruise | Southern Atlantic Ocean             | Neprochnov (1989)                     |
| 894     | 1983             | Alpha Bidge Arctic Ocean                         | Arctic Ocean                        | Forsyth et al. (1986)                 |
| 8.9.4   | 1983–1984        | Southwest Newfoundland transform                 | Eastern Canada                      | Todd et al. (1988)                    |
| 894     | 1984             | "Meteor (1964)" expedition M67                   | Off Northwest Africa                | Sarnthein et al. (2008)               |
| 0.0.4   | 1004 1005        | LISCS Culf of Moine                              | Northogotorn United States          | Hutchingon et al. (1097)              |
| 0.9.4   | 1904-1903        | Neufoundlend centinentel mersin                  | Fostern Conside                     |                                       |
| 8.9.4   | 1984-1987        | Newfoundiand continental margin                  | Eastern Canada                      | Keen et al. (1990)                    |
| 8.9.4   | Mid-1980s        | Labrador Sea                                     | Northwest Atlantic                  | Osler and Louden (1992)               |
| 8.9.4   | 1985             | WAM Western Approaches Margin                    | Southwest of Britain                | Peddy et al. (1989)                   |
| 8.9.4   | 1985             | COOLE Caledonian offshore                        | South and southwest off<br>Ireland  | O'Reilly et al. (1991)                |
| 8.9.4   | 1985             | Hatton bank volcanic margin                      | West off Ireland                    | Morgan and Barton (1990)              |
| 8.9.4   | 1985             | Svalbard Polish expedition                       | W and N Spitsbergen                 | Czuba et al. (1999)                   |
| 8.9.4   | 1985             | LASE Carolina Trough                             | North American Atlantic<br>margin   | Trehu et al. (1989b)                  |
| 8.9.4   | 1987             | Canary basin                                     | West off Canary Islands             | Banda et al. (1992)                   |
| 894     | 1987             | Goban Spur continental margin                    | Southwest of Britain                | Horsefield et al. (1994)              |
| 894     | 1087             | Apair rift                                       | East of Iceland                     | Grevemever et al. (1997)              |
| 8.9.4   | 1987–1989        | Soviet ice-station North Pole-28                 | Arctic Ocean                        | Langinen et al. (2009)                |
| 8.9.4   | 1988             | Madeira-Tore Rise, Josephine                     | West of northwest Africa            | Peirce and Barton (1991)              |
| 894     | 1088             | Lofoten-Voring margin                            | Off Norway                          | Mielde et al. (1992)                  |
| 901     | 1000 1000        | Soorosby Sud on offshoro                         | Eastern Greenland                   | Woigol et al. (1995)                  |
| 0.9.4   | 1000             |                                                  | North American Atlantia             | $\frac{1}{2}$                         |
| 0.9.4   | 1900             | embayment                                        | margin                              | On et al. (1991)                      |
| 8.9.4   | 1988, 1989       | Jameson Land onshore                             | Eastern Greenland                   | iviandler and Jokat (1998)            |
| 8.9.4   | 1988, 1990       | RAPIDS Rockall and Porcupine basins              | West off Ireland                    | Shannon et al. (1994)                 |
| 8.9.4   | End-1980s        | PROBE survey off equatorial Africa               | South Atlantic                      | Rosendahl et al. (1991)               |
| 8.9.4   | 1989             | On-offshore wide-angle seismics                  | Western Greenland                   | Clement et al. (1994)                 |
| 8.9.4   | 1989             | Makarov Basin, Arctic Ocean                      | Arctic Ocean                        | Sorokin et al. (1999)                 |
| 894     | 1990             | Scoresby Sud on-offshore                         | Fastern Greenland                   | Mandler and Jokat (1998)              |
| 801     | 1000             | EDGE Mid-Atlantic MSC ovportment                 | North American Atlantic chalf       | Holbrook at al. $(1002h)$             |
| 0.7.1   | 1007#            | AGSO Australian offehere lines                   | Australia                           | 1000000000000000000000000000000000000 |
| J./.I   | 1000 1000        |                                                  | Australia                           | Colleby et al. $(1994)$               |
| 9.7.1   | 1989-1992        | AGSO on-onshore program                          | Australia                           | Goleby et al. (1994)                  |

TABLE 2.8. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1980S (continued)

### Chapter 2

In Europe, ECORS profiling, for example, was always accompanied by simultaneous wide-angle operations as were the first long reflection profiles accompanying the search for deep drill sites in southern Germany. Also the Alpine part of the EGT refraction line was covered by the Swiss reflection seismic program. Mooney and Brocher (1987) compiled a global review of coincident seismic reflection/refraction studies of the continental lithosphere up until the mid-1980s. An important result was that the Moho was identical, if observed by refraction-wide-angle observations or by near-vertical incidence reflection profiles. At almost all seismic-reflection profiles of BIRPS, ECORS, and DEKORP, as far as they were recorded over Caledonian and Variscan basement, the Moho was clearly identified as the lowest boundary of the laminated lower crust. The same observation was made on seismic-reflection profiles recorded in the Basin and Range province and other extensional areas of the mobile western United States.

Comprehensive reviews on the seismic velocity structure of the deep continental lower crust which represent the state of the art by the end of the 1980s have been published, e.g., by Holbrook et al. (1992a), including a table of lower-crust velocities and corresponding references typical for different tectonic environments. Mooney and Meissner (1992) investigated the multi-genetic origin of crustal reflectivity by reviewing deep seismic reflection profiles around the world. Other compilations contain summaries of crustal and upper mantle structure based on controlled-source seismology observations, both seismic reflection and refraction, for different continents or large parts of those continents, e.g., by Meissner et al. (1987b) for Europe (Fig. 2.8-05), Pavlenkova (1996) for the territories of the former Soviet Union, Braile et al. (1989) and Mooney and Braile (1989a) for North America (Fig. 2.8-06), or Mechie and Prodehl (1988) for the Afro-Arabian rift. Based on a series of discussions at meetings of experts (Olsen, 1995; Ziegler, 1992a, 1992b, 1992c), different authors compiled reviews for continental rifts around the world.



Figure 2.8-05. Contour map of crustal thickness across Europe (from Meissner et al., 1987b, fig. 3). [Annales Geophysicae, 5B, p. 357–364. Reproduced by permission of the author.]

History of Controlled-Source Seismology—A Brief Summary



Figure 2.8-06. Contour map of crustal thickness for North America (from Braile et al., 1989, fig. 3). [*In* Pakiser, L.C., and Mooney, W.D., eds., Geophysical framework of the continental United States: Geological Society of America Memoir 172, p. 655–680. Reproduced by permission of the Geological Society of America.]

### 2.9. THE 1990s AND EARLY 2000s (1990-2005)

With advanced technology, seismic projects had become more and more expensive, using multiple energy sources and a large number of sophisticated recording devices. In the early 1990s, the change from analog to digital recording caused a major breakthrough toward modern recording and interpretation techniques. Most projects were neither projects of individual researchers nor of individual research institutions, but became mostly imbedded in large-scale research programs which involved a multitude of cooperating institutions and an interdisciplinary cooperation of scientists from various geoscientific fields. Starting in the 1980s, and continuing in the 1990s, this was reflected in the formulation of large reflection programs on national scales such as COCORP and BIRPS, which were followed by the foundation of IRIS/PASSCAL in the United States and LITHOPROBE in Canada and by international and interdisciplinary geoscientific programs in Europe, dealing with largescale tectonic topics.

An important prerequisite for the successful worldwide cooperation in seismic projects was the development of new digital equipment, which had started by the end of the 1980s and continued into the 1990s both in North America and in Europe. In particular the North American equipment not only stimulated and enabled new large-scale seismic-refraction/reflection experiments in Canada and in the United States, but it would also enable many large-scale projects in Europe and Africa. The U.S. Geological Survey–Stanford instrumentation SGR led to the powerful RefTek generation and was fundamental for successful joint European–United States projects in Kenya, France, and Spain in the early 1990s. The IRIS/PASSCAL and LITHO-PROBE instrument pools were combined for many large-scale projects in North America, and the IRIS/PASSCAL instrument pool was vital for the large-scale projects in eastern Europe and in Ethiopia at the end of the 1990s and beginning of the 2000s. European research groups also supported several seismic projects in North America.

In 1992, supported by the European Science Foundation, EUROPROBE, a lithosphere dynamics program concerned with the origin and evolution of the continents (Gee and Zeyen, 1996; Gee and Stephenson, 2006) was founded in Europe. EUROPROBE's focus was mainly on, but not restricted to, Europe and was particularly driven to emphasize and encourage East-Central-West European collaboration. It was dedicated to enable the realization of major projects, which aimed to investigate the whole lithosphere and which required the close multinational cooperation of geologists, geophysicists, and geochemists.

Particular EUROPROBE projects (Fig. 2.9-01) that involved major controlled-source seismic experiments were the TESZ project, investigating the Trans-European fault zone TTZ in Scandinavia and Poland; the Uralides, with major seismic campaigns in the Urals; Georift, emphasizing the Dniepr-Donets basin; Eurobridge, establishing a seismic crustal traverse from Lithuania to the Ukraine; and PANCARDI, an interdisciplinary geoscientific frame for large-scale investigations in the Carpathian area, in particular focusing on the deep-earthquake region of Vrancea in the Romanian Carpathians.

Other large-scale interdisciplinary projects in Europe were a seismic-reflection traverse through the Eastern Alps (Gebrande et al., 2006), a German priority program focusing on the tectonics of the Central European Variscides (Franke et al., 2000), and VARNET, a major research program studying the Variscan front in Ireland (Landes et al., 2003).

In North America during the LITHOPROBE project (see Fig. 9.4.1-01), a large number of seismic projects systematically investigated crust and uppermost mantle of Canada (e.g., Clowes et al., 1999). The results were published in the context of interdisciplinary summary volumes for the different LITHOPROBE transects (e.g., Ludden, 1994, 1995; Wardle and Hall, 2002a; Hajnal et al., 2005a). Numerous detailed seismic studies were undertaken in the western United States along the coast, of which the projects SHIPS around Seattle (Snelson, 2001), BASIX (Brocher et al., 1991b) around San Francisco, and LARSE (Fuis et al., 1996, 2001b) around Los Angeles investigated the crustal structure in earthquake-prone regions in much detail. A similar project, JTEX, targeted the crustal structure beneath a large



Figure 2.9-01. Map of EUROPROBE projects (from Gee and Zeyen, 1996, p. 12). [EUROPROBE Secretariat, Upssala University, 138 p., Copyright EUROPROBE.]

continental silicic magmatic system in the Jemez Mountains of New Mexico (Baldridge et al., 1997). The "Deep Probe" experiment of 1995 (Snelson et al., 1998; Gorman et al., 2002) followed approximately the 110th meridian and spanned a distance of 3000 km from the southern Northwest Territories to southern New Mexico. It targeted the velocity structure from the base of the crust to depths as great as the mantle transition zone near 400 km depth. Also in 1995, 14 institutions of the United States created the interdisciplinary geoscience project CD-ROM (Continental Dynamics-Rocky Mountain) with the aim to realize a detailed crustal and upper mantle interdisciplinary investigation of the Southern Rocky Mountains from central Wyoming to central New Mexico, following approximately the 101st meridian and involving tectonics, structural geology, regional geophysics, geochemistry, geochronology, xenolith studies, and seismic studies (Karlstrom and Keller, 2005). The seismic component involved seismic reflection and seismic refraction experiments in 1999 as well as teleseismic studies along a 1000-km-long north-southdirected traverse along the southern Rocky Mountains.

Major efforts were undertaken to unravel the details of crustal structure beneath the Afro-Arabian rift system, based on the experiences collected by the earlier expeditions. In 1990 and 1994, two major international campaigns explored the crust and upper mantle under the East African rift of Kenya combining seismic refraction and teleseismic tomography investigations (Prodehl et al., 1994a, 1997a; Fuchs et al., 1997). Figure 2.9-02 summarizes all projects undertaken within the Afro-Arabian Rift System from 1969 until 1995. In 2001, the northern end of the East African Rift system in Ethiopia was the target of a major seismic experiment (Maguire et al., 2003), and the Dead Sea transform saw the beginning of a major international seismic campaign in 2000, covering both sides of the rift in Jordan and Israel (DESERT Group, 2004).

Following the large-scale seismic reflection programs in North America and Europe, the National Geophysical Research Institute at Hyderabad undertook large-scale COCORPequivalent studies in India. Special targets were the structure and tectonics of the Aravalli-Delhi fold belt in northwestern India (Rajendra Prasat et al., 1998) and in southern India. Other investigations in the Himalayas and southern India used seismological observations (Rai et al., 2006; Krishna et al., 1999).

The seismic investigations of the crust and upper mantle of China with explosion seismology of the 1980s were continued even more intensively with many deep-seismic sounding profiles in mainland China in the 1990s (e.g., Li et al., 2006). It was, however, Tibet in particular that attracted scientists from all over the world. One of the largest cooperative seismic projects was INDEPTH in southern Tibet, involving both near-incident and wide-angle seismic reflection methodology as well as teleseismic tomography, which was accomplished with major U.S. and German participation in several phases, starting in 1992 (e.g., Nelson et al., 1996).

Controlled-source seismology in Japan was activated in the 1990s as part of the Japanese Earthquake Prediction Program.



Figure 2.9-02. Map of long-range seismic lines in the Afro-Arabian rift system. Continuous lines: seismic-refraction surveys; full circles mark shotpoints where locations were published. Dashed lines: approximate lines through epicenters of local earthquakes. 1—Kenya rift 1968; 2–Djibouti 1971; 3—Afar depression 1972; 4—Jordan–Dead Sea–Gulf of Aqaba transform system 1977; 5—Arabian Shield 1978; 6—Northern Red Sea 1978; 7—Northern Red Sea 1981; 8—Jordan 1984; 9—Kenya rift 1985; 10—Northern Red Sea; 11—Southern Red Sea; 12—Kenya rift 1990; 13—southern Kenya 1994; 14—Western Rift: local earthquakes recorded at two stations UVI and BTR (marked by crosses) of the IRSAC network near Bukavu, evaluated as seismic profiles UVI-N and BTR-WNW. For references, see Prodehl et al. (1997a, fig. 1). [Tectonophysics, v. 278, p. 1–13. Copyright Elsevier.]

### Chapter 2

Following the destructive Kobe earthquake of 17 January 1995, seismic refraction (Research Group on Underground Structure in the Kobe-Hanshin Area, 1997; Research Group for Explosion Seismology, 1997; Ohmura et al., 2001) and reflection (Sato et al., 1998) measurements were carried out in the surroundings of Kobe. Other experiments in the first half of the 1990s in Japan focused on the investigation on the deeper crustal structure including lower crust and Moho beneath the SW and NE Japan arcs (e.g., Iwasaki et al., 1994, 1998). In 1994, for the first time in Japan, a seismic reflection survey for deep structural studies was undertaken through the Hidaka Collision zone, Hokkaido (Arita et al., 1998). The subsequent reflection surveys in 1996-1997 provided a clear image of a delamination structure and a reflective lower crust in the collision zone (Tsumura et al., 1999; Ito, 2000, 2002). Since then, seismic surveys using both of reflection and refraction methods became more common in Japan and detailed crustal sections were presented for NE Japan and Hokkaido (e.g., Iwasaki et al., 2001a, 2004; Sato et al. 2002).

Since 1985, the Australian Geological Survey Organisation (AGSO) ran a large program of deep seismic reflection surveys offshore and onshore Australia (Drummond et al., 1998; Finlayson et al., 1996, 1998; Finlayson, 2010, Appendix 2-2; Glen et al., 2002; Goleby et al., 2002; Korsch et al., 1992, 1997, 2002; Petkovic et al., 2000). Several reviews (e.g., Collins et al., 2003; Finlayson, 2010; Goleby et al., 1994) have summarized the results of crust and upper-mantle studies for Australia. Collins et al. (2003) published a crustal thickness map based primarily on the results of controlled-source seismology investigations. In general, within Archean regions of western Australia, the Moho appeared to be relatively shallow with a large velocity contrast, while the Moho is significantly deeper under the Proterozoic North Australian platform, under central Australia and under Phanerozoic southeastern Australia.

To understand the processes involved in continental collision, New Zealand, being deformed by the oblique collision of several plates, was the goal of a joint U.S.-New Zealand geophysical project SIGHT (South Island Geophysical Transect), undertaken in 1995 and 1996. The project involved both active source and passive seismology. The experiment had two main components. The first was a wide-angle reflection-refraction experiment along two land transects across the central South Island. The second experiment consisted of three offshore-onshore transects, two along the two land profiles of the first phase and a third along southeastern South Island. This third transect was a tie line across the eastern part of the two main transects (Davey et al., 1998). Another project in 2001 and 2002 investigated the Central Volcanic Region or Taupo Volcanic Zone (TVZ) occupying the northern half of the North Island of New Zealand (Harrison and White, 2006).

In South America, several seismic profiling projects investigated the area of the deep drilling project in the Chicxulub impact crater at the coast of the Yucatan peninsula, Mexico (e.g., Snyder et al., 1999; Morgan et al., 2005), northern Venezuela (Schmitz et al., 2002, 2005), and central Brazil (Berrocal et al., 2004). The majority of seismic investigations in South America, however, concentrated on the Andean region of Chile and the adjacent Pacific Ocean (Fig. 2.9-03). For example, a Collaborative Research Center 267 (CRC 267) program "Deformation Processes in the Andes" at the Free University of Berlin, the GeoScience Center of Potsdam, and the University of Potsdam (Germany) was funded by the German Research Society for 15 years (Giese et al., 1999).

The new investigations enabled extended seismic research, but also involved other geoscientific disciplines available at the three research institutions and included strong support by various South American research facilities. In the years 1994–1996, three major seismic projects-PISCO 94, CINCA 95, and ANCORP 96-were conducted in northern Chile and adjacent parts of Bolivia and Argentina (Fig. 2.9-03, northern box; see also Fig. 9.7.3-10). Besides northern Chile, southern Chile became the target of the same research groups, who had cooperated in 1995 in the CINCA project. Also in 1995, within the multidisciplinary CONDOR (Chilean Offshore Natural Disaster and Ocean Environmental Research) project, a marine operation investigated the Valparaiso Basin offshore from Valparaiso, central Chile, along two marine-seismic reflection and refraction profiles north and south of the latitude 33°S (Flueh et al., 1998a). In 2000, the Collaborative Research Center CRC 267 at Berlin and Potsdam, Germany, started a detailed research project in southern Chile (Fig. 2.9-03, southern box; see also Fig. 9.7.3-24). The first approach was the project ISSA 2000 (Sick et al., 2006) and consisted of a temporary seismological network and a seismicrefraction profile. This project was followed by the project SPOC in 2001 (Krawczyk et al., 2006), which involved a shipborne geophysical experiment and two predominantly land-based onshore-offshore experiments. All seismic arrays also recorded teleseismic, regional, and local events. Furthermore broadband stations were deployed along some of the lines.

During the 1990s, digital equipment for marine seismic research also became available, with both digital streamers for details of sedimentary structure beneath the ocean bottom as well as a new generation of ocean-bottom seismometers, which were built in large numbers. Underwater explosions as energy sources had been banned almost completely; instead powerful airgun arrays became available, providing sufficient energy to be recorded over hundreds of kilometers.

Seismic research projects in the 1990s and ongoing in the 2000s were largely devoted to the investigation of details of the mid-ocean rises, such as the East Pacific Rise. Here, for example, projects around the Galapagos hot spot and the Cocos-Nazca Spreading Center (e.g., Sallares et al., 2003) and the Garrett Fracture Zone (Grevemeyer et al., 1998) were undertaken. A large number of Japanese marine surveys, some of which also had land components, targeted the trench system in the Philippine Sea and northwestern Pacific Ocean around Japan. In particular, the Nankei Trough and the Japan trench south and east of Honshu was intensively investigated (e.g., Kodaira et al., 2000; Miura et al., 2003, 2005; Takahashi et al., 2004; Tsuru et al., 2002).



History of Controlled-Source Seismology-A Brief Summary

Figure 2.9-03. Topographic map of South America showing the seismic investigation areas in Chile (from Sick et al., 2006, fig. 7-1). Northern box labeled "Figure 7.2" indicates the location of the research projects PISCO94 CINCA95, ANCORP96, and PRECORP; the southern box labeled "Figure 7.13" indicates the location of the research projects ISSA 2000 and SPOC 2001. [Oncken et al., 2006, The Andes: Berlin-Heidelberg-New York, Springer, p. 147–169. Reproduced with kind permission of Springer Science+Business Media.]

### Chapter 2

A large number of seismic reflection surveys studied the margins of Australia (Finlayson, 2010; Appendix 2-2). In the Indian Ocean the Ninetyeast Ridge was investigated (Grevemeyer et al., 2001a). In the Atlantic the Mid-Atlantic Ridge (e.g., Hooft et al., 2000), but also the continent-ocean transitions were major targets. In particular in the northern Atlantic Ocean projects targeted the microcontinents and intervening basins off Ireland (e.g., Mackenzie et al., 2002), the Norwegian margin (e.g., Raum et al., 2002), the Faeroe-Iceland Ridge (e.g., Smallwood et al., 1999), the northwestern Barents Sea southeast of Spitsbergen (Breivik et al., 2002) and eastern Greenland (e.g., Korenaga et al., 2000, Schmidt-Aursch and Jokat, 2005). The Arctic-2000 transect in the Arctic Ocean between 164°W and 165°E (Lebedeva-Ivanova et al., 2006) and the investigation of the North American margin off Canada (e.g., Funck et al., 2003) were other large marine projects.

In this overview of projects conducted during the various decades, only a limited selection of major research projects could be mentioned. For the 1990s, a summary of all projects mentioned in Chapter 9 is presented in Table 2.9.

Beginning in the 1990s, large-scale teleseismic tomography projects (so-called passive studies, i.e., long-term recording of earthquakes) were carried out in association with large-scale seismic refraction programs (so-called active source studies, i.e., recording controlled sources, such as quarry blasts, borehole and underwater explosions, vibrators, or airguns), thus extending crustal and uppermost mantle research to greater depth ranges. Examples, to name a few, are the KRISP and EAGLE investigations of the East African Rift System in Kenya (Prodehl et al., 1994a; Fuchs et al., 1997) and Ethiopia (Maguire et al., 2003); the onshore-offshore investigations of the Andean region in South America (e.g., ANCORP Working Group, 2003; Flueh et al., 1998a; Giese et al., 1999; Krawczyk et al., 2003, 2006; Rietbrock et al., 2005); the INDEPTH expeditions to Tibet (e.g., Brown et al., 1996; Nelson et al., 1996; Zhao et al., 1993, 1997, 2001); the SKIPPY experiments across Australia (Van der Hilst et al., 1994, 1998; Finlayson, Appendix 2-2); and the CD-ROM project in the Southern Rocky Mountains (Karlstrom and Keller, 2005). The interpretation of these data required special inversion methods used originally in passive experiments, but which in the course of time proved to be practical also for controlled-source seismology data. In particular, the method for studies of crust and upper mantle with P-wave receiver functions, which was being developed since the early 1980s, and later S-wave receiver function studies in the late 1990s, proved to be a very efficient and relatively cheap interpretation tool of the large-scale teleseismic data.

An overview of interpretation methods used in the 1990s to interpret combined active and passive studies was given at one of the Commission on Controlled Source Seismology workshop meetings, held in Dublin in 1999 (Jacob et al., 2000). Introduced in the 1970s (Červený et al., 1977), the ray-tracing method has remained an almost universal method for data interpretation. The most commonly used programs include ray-theoretical and Gaussian-beam synthetic seismograms (Červený, 1985). Based on finite-difference methods for calculating the full wavefield in horizontally inhomogeneous media, it became possible to make calculations for refraction/wide-angle reflection data on a crustal/lithosphere scale over several hundreds of kilometers and at realistic frequencies. Other groups also wrote ray synthetic seismogram routines, e.g., McMechan and Mooney (1980) in the United States or Spence et al. (1984) in Canada. Ray-tracing using a finite-difference approximation of the eikonal equation was improved in the 1990s and extended in a way that reflected arrivals and second arrival refractions from prograde traveltime branches could be calculated (Hole and Zelt, 1995). In addition, commonly used methods in the processing of near-vertical incidence seismic reflection data, such as normal moveout correction and migration, were applied to refraction/wide-angle reflection data (e.g., Lafond and Levander, 1995).

In the 1990s, theory and associated computer programs on traveltime tomography developed by Colin Zelt and others became popular and evolved to a method widely applied as a first approach to model large amounts of data as well as a last check of the validity of a model (Zelt and Smith, 1992; Zelt, 1998, 1999). Nowadays, there is hardly a publication on crustal and upper mantle interpretation which does not first apply a tomographic approach to the seismic data, before refined raytracing modeling is applied (for example, interpretations of the Polonaise and Celebration 2000 data, see, e.g., Guterch et al., 2003a, 2003b).

### **2.10. OUTLOOK**

Textbooks on seismic theory, published in large numbers over the decades, have accompanied and guided the development of interpretation methods to deal with the proper interpretation of active source seismic data obtained on land and at sea (e.g., Nettleton, 1940; Bullen, 1947; Worzel and Ewing, 1947; Grant and West, 1965; Musgrave, 1967; Maxwell, 1970; Kosminskaya, 1971; Officer, 1974; Červený et al., 1977; Kennett, 1983; Bullen and Bolt, 1985; Yılmaz, 1987; Lay and Wallace, 1995; Aki and Richards, 1980, 2002; Jones, 1999; Kennett, 2001; Chapman, 2004; Borcherdt, 2009). There are in addition numerous articles that address various aspects concerning the theory for interpretations of controlled-source seismology data (e.g., Steinhart et al., 1961c; Ewing, 1963a; Ludwig et al., 1970; Fuchs and Mueller, 1971; Bessonova et al., 1974; Braile and Smith; 1975; Giese, 1976; McMechan and Mooney, 1980; Červený and Horn, 1980; Spence et al., 1984; Červený, 1979, 1985; Zelt and Smith, 1992; Hole, 1992; Hole and Zelt, 1995; Zelt, 1999). Similarly, compilations of interpretation methods commonly used were also summarized from time to time (e.g., James and Steinhart, 1966; Mooney, 1989; Braile et al., 1995). Levander et al. (2007) provided a convenient review of theory and application of controlled-source seismic data.

The large number of digital recording devices available by the year 2000, as well as the ability to record continuously over long time periods, has opened a new dimension in crustal investigations.

# History of Controlled-Source Seismology—A Brief Summary

TABLE 2.9. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1990s

|         | 17.022 21  |                                        |                           |                                            |
|---------|------------|----------------------------------------|---------------------------|--------------------------------------------|
| Chapter | Year       | Project                                | Location                  | Reference                                  |
| 9.2.1   | 1996       | VABNET96 Variscan crust                | SW Ireland                | Landes et al. (2003)                       |
| 921     | 1999       | LEGS Leinster Granite Seismics         | SE Ireland                | Hodoson et al. $(2000)$                    |
| 922     | 1990       | DEKOBP 3/MV/E                          | Central eastern Germany   | DEKOBP Research Group (1994)               |
| 0.2.2   | 1000 1001  | Phinographon D 00/D L 01               | SW Cormony                | Mayor of al. (1997)                        |
| 0.2.2   | 1001 1002  | French Massif Control                  | South control Franco      | $Z_{0}$ and $Z_{0}$ and $Z_{0}$            |
| 9.2.2   | 1004       | Phinographon PLL 04                    | SW Cormony                | $M_{\text{ever}} \text{ ot al. (1997)}$    |
| 9.2.2   | 1005       | CRANI IOE Seven Grenulite Mountain     | Control contorn Cormony   | Enderle et al. (1997)                      |
| 9.2.2   | 1995       | GRANU95 Saxon Granulite Mountain       |                           | Enderie et al. (1998)                      |
| 9.2.2   | 1995       | DEKORP 95 Saxon Granulite Mountain     | Eastern Germany           | Krawczyk et al. (2000)                     |
| 9.2.2   | 1996       | DEKORP-BASIN                           | Northern Germany          | Krawczyk et al. (1999)                     |
| 9.2.2   | 1996       | BASIN'96 Bornholm                      | Baltic Sea                | Bleibinhaus et al. (1999)                  |
| 9.2.2   | 1998-2001  | TRANSALP Eastern Alps                  | Germany-Italy             | Lueschen et al. (2004)                     |
| 9.2.3   | 1990       | ESCI-Catalan-Mallorca                  | NE Spain                  | Gallart et al. (1994)                      |
| 9.2.3   | 1990       | CROP 03 southern Apennines             | Southern Italy            | Scrocca et al. (2003)                      |
| 9.2.3   | 1990       | Southern Calabria Hercynian crust      | Southern Italy            | Lueschen et al. (1992)                     |
| 9.2.3   | 1991       | CROP MARE 1                            | NW, SW and S off Italy    | Scrocca et al. (2003)                      |
| 9.2.3   | 1991, 1993 | ESCIN Northern Iberian Pensinsula      | Northern Spain/Bay Biscay | Alvarez-Marron (1996)                      |
| 9.2.3   | 1992       | Cantabrian Mountains                   | Northern Spain            | Fernandez-Viejo (2000)                     |
| 9.2.3   | 1992       | STREAMERS Ionian Sea                   | Italy-Greece              | Hirn et al. (1996)                         |
| 9.2.3   | 1992–1993  | CROP 04 northern Apennines             | Central Italy             | Scrocca et al. (2003)                      |
| 9.2.3   | 1993–1994  | CROP MARE 2                            | SW and S and E off Italy  | Scrocca et al. (2003)                      |
| 9.2.3   | 1995       | CROP 18 northern Apennines             | Central Italy             | Scrocca et al. (2003)                      |
| 9.2.3   | 1996–1999  | CROP 11 central Apennines              | Central Italy             | Scrocca et al. (2003)                      |
| 9.2.3   | 1998–1999  | CROP 1A Transalp                       | Northern Italy            | Scrocca et al. (2003)                      |
| 9.2.4   | 1992       | Pannonian Geotraverse                  | Hungary                   | Hajnal et al. (1996)                       |
| 9.2.3   | 1993       | IAM Iberian Atlantic Margins           | Iberia-Atlantic           | Banda et al. (1995)                        |
| 9.2.3   | 1995       | LISA Ligurian Sea                      | Western Mediterranean     | Nercessian et al. (2001)                   |
| 9.2.3   | 1993       | ESCI-Betics reflection lines           | Southern Spain            | Carbonell et al. (1998a)                   |
| 9.2.3   | 1997       | SEISGRECE Ionian islands               | W Greece                  | Clement et al. (2000)                      |
| 9.2.4   | 1997       | POI ONAISE Polish lithosphere          | Poland                    | Guterch et al. (1999)                      |
| 924     | 1999       | VBANCEA 1999 SE Carpathians            | Romania                   | Hauser et al. (2001)                       |
| 924     | 2000       | CELEBRATION F and SE Europe            | Poland-Hungary            | Guterch et al. (2003b)                     |
| 924     | 2000       | VBANCEA 2001 SE Carpathians            | Bomania                   | Hauser et al. (2007a)                      |
| 925     | 1992       | BIBPS reflection/refraction project    | North Sea                 | Sinch et al. $(1998a)$                     |
| 0.2.5   | 1002       |                                        | North Sea                 | MONA LISA WG (1997)                        |
| 0.2.5   | 1005       | COAST Profile Baltic See               | Swodon                    | Lund at al. $(2001)$                       |
| 9.2.0   | 1995       | CDAST FIDILE Dalic Sea                 | Bussia                    | Lucebon $(1002)$                           |
| 9.0     | 1001       | GRANIT ANISOLIOPY ASTRA                | Russia                    | Lueschen (1992)                            |
| 9.0     | 1000       | Kala barabala agiamiga                 | NW Puppin                 | $G_{\text{anabia}} \text{ of all } (1990)$ |
| 9.3     | 1002 2002  | ESPLI Middle Lirele                    | Russia<br>Russia          | Kaahuhin et al. (1996)                     |
| 9.3     | 1993-2003  |                                        | NUSSIA                    |                                            |
| 9.3     | 1994-1990  | EURODRIDGE 95 allu 90                  |                           | EUROBRIDGE WG (1999)                       |
| 9.3     | 1995       | Kola borenole-Franz-Joser land         | NW Russia                 | Sakouina et al. (2000)                     |
| 9.3     | 1995       |                                        | Russia                    | Carbonall at al. (1998)                    |
| 9.3     | 1995       | DRSEIS 95 refraction seismics orais    | Russia                    | Carbonell et al. (2000b)                   |
| 9.3     | 1995-2001  | Barents Sea-Novaya Zemiya-             | Russia                    | Roslov et al. (2009)                       |
| 9.3     | 1997       | EUROBRIDGE 97                          | Ukraine                   | Thybo et al. (2003)                        |
| 9.3     | 1997-00    | Kola borenole CMP lines to N and W     | NW Russia                 | Berzin et al. (2002)                       |
| 9.3     | 1999       | DOBRE Donbas Foldbeit                  | Ukraine-Russia            | DOBRE WG (2003)                            |
| 9.3     | 2000-02    | Mezen Basin–Timan Range                | NW Russia                 | Kostyuchenko et al. (2006)                 |
| 9.4.1.1 | 1991       | LITHOPROBE LE91 on-offshore            | SE Canada                 | Mariller et al. (1994)                     |
| 9.4.1.2 | 1991, 1996 | LITHOPROBE ESCOOT                      | SE Canada                 | wardle and Hall (2002)                     |
| 9.4.1.3 | 1991–1992  | Abitibi-Grenville Transect             | Canada                    | Clowes et al. (1992)                       |
| 9.4.1.4 | 1996       | Western Superior Transect              | Canada                    | Musacchio et al. (2004)                    |
| 9.4.1.5 | 1991–1994  | THOT Trans-Hudson Orogen Transect      | Canada                    | Hajnal et al. (2005b)                      |
| 9.4.1.5 | 1993       | THORE Trans-Hudson Long Refraction     | Canada                    | Nemeth et al. (2005)                       |
| 9.4.1.6 | 1992       | CAT92 3D seismic reflection experiment | W Canada                  | Kanasewich et al. (1995)                   |
| 9.4.1.6 | 1994, 1995 | PRAISE94/SALT95/VAULT                  | W Canada                  | Mandler and Clowes (1998)                  |
| 9.4.1.6 | 1995       | SAREX/Deep Probe                       | W Canada                  | Clowes et al. (2002)                       |
| 9.4.1.7 | 1994       | ACCRETE marine shots                   | W Canada                  | Hammer et al. (2000)                       |
| 9.4.1.7 | 1997       | SNORCLE transect refraction            | W Canada                  | Clowes et al. (2005)                       |
| 9.4.2.1 | 1990       | Brooks Range, Northern Alaska          | N Alaska                  | Fuis et al. (1997)                         |
| 9.4.2.1 | 1994       | EDGE Prince William Sound              | Southern Alaska           | Ye et al. (1997)                           |
| 9.4.2.1 | 1994       | Aleutian volcanic arc                  | Southern Alaska           | Fliedner and Klemperer (1999)              |
| 9.4.2.1 | 1994       | Continental shelf                      | Alaska-Siberia            | Brocher et al. (1995a)                     |
| 9.4.2.2 | 1991       | Pacific NW Experiment                  | Washington, USA           | Trehu et al. (1993)                        |
| 9.4.2.2 | 1991, 1995 | Western Washington on-offshore         | Washington, USA           | Parsons et al. (1999)                      |
| 9.4.2.2 | 1994       | Cape Blanco, southern Oregon           | Oregon, USA               | Brocher et al. (1995b)                     |
| 9.4.2.2 | 1996       | Oregon continental margin              | Oregon, USA               | Flueh et al. (1997)                        |
| 9.4.2.2 | 1998       | Wet SHIPS, Puget Sound                 | Washington, USA           | Brocher et al. (1999)                      |
| 9.4.2.2 | 1999       | Dry SHIPS, Seattle basin               | Washington, USA           | Brocher et al. (2000)                      |
| 9.4.2.2 | 2000       | Kingdome SHIPS                         | Washington, USA           | Snelson (2001)                             |

42

TABLE 2.9. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1990s (continued)

| Chapter   | Year       | Project                                 | Location                   | Beference                       |
|-----------|------------|-----------------------------------------|----------------------------|---------------------------------|
|           | 1001       |                                         |                            |                                 |
| 9.4.2.3.1 | 1993–1994  | Mendocino Triple Junction               | California, USA            | Godfrey et al. (1998)           |
| 9.4.2.3.2 | 1990       | Loma Prieta refraction line             | California, USA            | Brocher et al. (1992)           |
| 9.4.2.3.2 | 1991       | BASIX San Francisco Bay Area            | California, USA            | Holbrook et al. (1996)          |
| 9.4.2.3.2 | 1991, 1993 | USGS refraction San Francisco Bay area  | California, USA            | Kohler and Catchings (1994)     |
| 94232     | 1995       | San Francisco Bay inline and fan lines  | California USA             | Parsons (1998)                  |
| 94233     | 1995       | San Andreas fault project               | California USA             | Thurber et al. (1996)           |
| 04004     | 1004       |                                         | California, UCA            | Fuice et al. $(1990)$           |
| 9.4.2.3.4 | 1994       |                                         |                            | Fuis et al. (1990)              |
| 9.4.2.3.4 | 1999       | LARSE II Los Angeles area               | California, USA            | Fuis et al. (2001)              |
| 9.4.2.4   | 1992–1993  | Ruby Mountains seismic surveys          | Nevada, USA                | Satarugsa and Johnson (1998)    |
| 9.4.2.4   | 1993       | South Sierra Nevada                     | California, USA            | Ruppert et al. (1998)           |
| 9.4.2.4   | 1993       | Delta Force experiment, Basin and Range | California-Nevada-Arizona, | Hicks (2001)                    |
|           |            |                                         | USA                        |                                 |
| 9424      | 1994       | Yucca Mountain project                  | Nevada USA                 | Brocher et al. (1996)           |
| 9425      | 1003 1005  | ITEX Valles Caldera                     | New Mexico LISA            | Baldridge et al. (1997)         |
| 0.4.2.5   | 1005       | Deep Brobe 110°W long range             | Canada New Maxiaa          | Spoloop et al. (1007)           |
| 9.4.2.5   | 1995       | Deep Flobe TTO W long range             |                            | Shelson et al. (1997)           |
| 9.4.2.5   | 1999       | CD-ROM Southern Rocky Mountains         | vvyoming-inew iviexico     | Karistrom and Keller (2005)     |
| 9.4.2.6   | 1991       | Atlantic coastal plain profile          | South Carolina, USA        | Luetgert et al. (1994)          |
| 9.4.2.6   | 1996–1997  | E Tennessee Seismic Zone                | Eastern Tennessee, USA     | Hawman et al. (2001)            |
| 9.5.1     | 1990       | KRISP90 Kenya Rift seismics             | Kenya                      | Prodehl et al. (1994a)          |
| 9.5.1     | 1994       | KRISP94 southern Kenya Rift             | Kenya                      | Fuchs et al. (1997)             |
| 9.5.3     | 2000       | Jordan–Dead Sea Transform               | Israel-Jordan              | DESERT Group (2004)             |
| 961       | 1003       | Southern India aftershock lines         | India                      | Krishna et al. $(1999)$         |
| 0.6.1     | 1006       | Nagour Kunier doop reflection project   | India                      | Rejondra Propot (1009)          |
| 9.0.1     | 1990       | Nagaui-Kunjer deep renection project    |                            | Najenula Flasal (1990)          |
| 9.6.1     | 1998       | Active source Merapi                    | Java, Indonesia            | vvegler and Lunr (2001)         |
| 9.6.2     | 1992       | INDEPTHTTibet                           | China                      | Zhao et al. (1993)              |
| 9.6.2     | 1994–1995  | INDEPTH II Tibet                        | China                      | Nelson et al. (1996)            |
| 9.6.2     | 1994, 1997 | Dabie Shan Orogen                       | China                      | Wang et al. (2000)              |
| 9.6.2     | 1998       | INDEPTH III Tibet                       | China                      | Zhao et al. (2001)              |
| 962       | 1999*      | Sino-French network NF Tibet            | China                      | Galve et al. (2002)             |
| 0.6.2     | 2000*      | Altyn Tagh Bange                        | China                      | $Z_{\text{back}}$ at al. (2006) |
| 0.6.2     | 2000*      | 1000 km NE Tibet to Ordee beein         | China                      | $2 \ln 0 \ ct \ al. (2000)$     |
| 9.0.2     | 2000       | 1000 km he-mbel to Ordos basin          | Gillia                     | Liu et al. (2000)               |
| 9.6.3     | 1991       | 180 km line central Honshu              | Japan                      | Research Group for Explosion    |
|           |            |                                         |                            | Seismology (1994)               |
| 9.6.3     | 1992       | Central Hokkaido                        | Japan                      | Iwasaki et al. (1998)           |
| 9.6.3     | 1993       | Deep seismic sounding in Kanto and      | Japan                      | Research Group for Explosion    |
|           |            | Tohoku districts                        |                            | Seismology (1996)               |
| 9.6.3     | 1994–1997  | Hokkaido deep reflection survey         | Japan                      | Arita et al. (1998)             |
| 963       | 1995       | Kobe eq region profiles                 | lanan                      | Besearch Group for Explosion    |
| 0.0.0     | 1000       | Robe eq region promes                   | oapan                      | Soismology (1997)               |
| 0.0.0     | 1007       |                                         | lanan                      | Desearch Oreven for Evelopian   |
| 9.0.3     | 1997       | N Honshu on-olishore                    | Japan                      | Research Group for Explosion    |
|           |            |                                         |                            | Seismology (1997)               |
| 9.6.3     | 1998       | Backbone range in northern Honshu       | Japan                      | Research Group for Explosion    |
|           |            |                                         |                            | Seismology (2008)               |
| 9.6.3     | 1998–1999  | Hokkaido reflection lines               | Japan                      | Iwasaki et al. (2004)           |
| 9.6.3     | 1999-2000  | Hokkaido refraction lines               | Japan                      | Iwasaki et al. (2004)           |
| 963       | 2000       | On-offshore Kuril Arc. Hokkaido         | lanan                      | Nakanishi et al. (2009)         |
| 0.6.2     | 2000       | NE Hekkaide coast                       | lanan                      | Taira at al. (2002)             |
| 0711      | 1007#      | ACCO Australian offehare lines          | Australia                  | Calaby at al. $(2002)$          |
| 9.7.1.1   | 190711     |                                         | Australia                  | Goleby et al. (1994)            |
| 9.7.1.1   | 1989-1992  | AGSO on-onshore program                 | Australia                  | Goleby et al. (1994)            |
| 9.7.1.1   | 1991       | Bowen B-New England Orogen              | Eastern Australia          | Korsch et al. (1997)            |
| 9.7.1.1   | 1991       | Kalgoorlie traverse EGF01               | Western Australia          | Drummond et al. (2000a)         |
| 9.7.1.1   | 1992       | Otway basin onshore lines               | Southern Australia         | Finlayson et al. (1996)         |
| 9.7.1.1   | 1993       | 550 km reflection line Musgrave block   | Central Australia          | Korsch et al. (1998)            |
| 9.7.1.1   | 1994       | Mount Isa inlier line                   | NE Australia               | Drummond et al. (1998)          |
| 9711      | 1994-1995  | Otway basin offshore lines              | Southern Australia         | Finlayson et al. (1998)         |
| 0711      | 1005       | Tasmania offshore refl lnes             | Southern Australia         | Drummond et al. (2000b)         |
| 0711      | 1006 1000  | Prokon Hill reflection lines            | Eastern Australia          | Einloveen (2010)                |
| 9.7.1.1   | 1990-1999  |                                         | Eastern Australia          | Finlayson (2010)                |
| 9.7.1.1   | 1996, 1998 | OBS-Transects off IN Australia          | N AUStralia                | Petkovic et al. (2000)          |
| 9.7.1.1   | 1997, 1999 | Lacrian Fold Belt reflection lines      | Eastern Australia          | Finiayson (2010)                |
| 9.7.1.1   | 1997, 1999 | Goldfield Province                      | W Australia                | Goleby et al. (2002)            |
| 9.7.1.1   | 2001       | AGSNY Goldfield Province                | Western Australia          | Goleby et al. (2004)            |
| 9.7.1.2   | 1990       | Bay of Plenty, N-Island marine          | New Zealand                | Davey and Lodolo (1995)         |
| 9.7.1.2   | 1994       | MOOSE, S-Island marine                  | New Zealand                | Henrys et al. (1995)            |
| 9.7.1.2   | 1994       | Central South Island land survey        | New Zealand                | Kleffman et al. (1998)          |
| 9712      | 100/       | Stewart Island southern S Island        | New Zealand                | Davey (2005)                    |
| 0710      | 1005 1006  | SIGHT Southorn Alno                     | Southorn Now Zooland       | Davoy $(2000)$                  |
| J./.I.Z   | 1990-1990  |                                         |                            | Davey et al. (1990)             |
| 9.7.1.2   | 1996       | Siewart Island-Puysegur Bank            | Southern New Zealand       | ivieinuisn et al. (1999)        |
| 9.7.2     | 1995       | IVIAIVIBA Continental margin Namibia    | INAMIDIA                   | Bauer et al. (2000)             |
| 9.7.2     | 1999       | ORYX Erongo Mountains                   | Namibia                    | www.gfz-potsdam.de/GIPP         |
| 9.7.3.1   | 1995       | TICOSECT Nicoya Peninsula               | Off Costa Rica             | Christeson et al. (1999)        |

## History of Controlled-Source Seismology—A Brief Summary

TABLE 2.9. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN THE 1990s (continued)

|          | TABLE 2.5. MAG |                                         |                            |                                 |
|----------|----------------|-----------------------------------------|----------------------------|---------------------------------|
| Chapter  | Year           | Project                                 | Location                   | Reference                       |
| 9.7.3.1  | 1996           | COTCOB Nicova Peninsula                 | Costa Bica                 | Sallares et al. (1999)          |
| 9731     | 1996           | Chicxulub BIBPS reflection lines        | Mexico                     | Snyder et al. (1999)            |
| 9732     | 1997           | Toncantins Province                     | Brazil                     | Berrocal et al. (2004)          |
| 9732     | 1998           | ECOGLIAY Guavana Shield                 | Venezuela                  | Schmitz et al. (1999)           |
| 0732     | 2001           | ECCO Oriental basin                     | Venezuela                  | Schmitz et al. (2005)           |
| 0722     | 1004           | PISCO W Cordilloro                      | Northorn Chilo Bolivia     | Schmitz et al. $(2003)$         |
| 9.7.3.3  | 1994           |                                         | Northern Chile             | Betrivel et al. (1999)          |
| 9.7.3.3  | 1995           | CINCA OII-ONSHOTE Andes                 | Northern Chile             | Palzwani et al. (1999)          |
| 9.7.3.3  | 1995           | PRECORP reflection test profile Andes   | Northern Chile             | Final $(2003)$                  |
| 9.7.3.3  | 1995           | CONDOR off-onshore refi lines           | Central Chile              | Fluen et al. (1998a)            |
| 9.7.3.3  | 1996           | ANCORP reflection line Andes            | Northern Chile             | ANCORP Working Group (2003)     |
| 9.7.3.3  | 2000           | ISSA southern Andes                     | Southern Chile             | Lueth et al. (2003)             |
| 9.7.3.3  | 2001           | SPOC Subduction Offshore Chile          | Chile                      | Krawczyk et al. (2003)          |
| 9.7.4    | 1990–1991      | Antarctic Peninsula Polish expedition   | Antarctica                 | Grad et al. (1997)              |
| 9.7.4    | 1990–1991      | SERIS Ross Ice shelf                    | Antarctica                 | ten Brink et al. (1993)         |
| 9.7.4    | 1993–1994      | ACRUP southern Ross Sea                 | Antarctica                 | Trey et al. (1999)              |
| 9.8.2    | 1989           | Society Island Hotspot Chain            | Pacific Ocean              | Grevenmeyer et al. (2001b)      |
| 9.8.2    | 1991           | TERA East Pacific Rise                  | Pacific Ocean              | Detrick et al. (1993)           |
| 9.8.2    | 1992           | Izu-Ogasawara island arc                | South off Japan            | Suyehiro et al. (1996)          |
| 9.8.2    | 1993           | East Pacific Rise at 9°-10°N            | East Pacific               | Christeson et al. (1997)        |
| 9.8.2    | 1993           | Hess Deep rift vallev                   | Pacific Ocean              | Wiggins et al. (1996)           |
| 9.8.2    | 1994           | Macquarie Ridge                         | SW off New Zealand         | Finlayson (2010)                |
| 9.8.2    | 1994           | Nankai Trough FRI94 line                | SW Japan                   | Kodaira et al. (2000)           |
| 982      | 1995           | Nankai Trough EBI95 line                | SW Japan                   | Kodaira et al. (2000)           |
| 9.8.2    | 1995           | EXCO S East Pacific Rise                | Pacific Ocean              | Grevenever et al. (1998)        |
| 9.8.2    | 1995           | TAICBUST off Taiwan                     | Pacific Ocean              | Schnuerle et al. (1998)         |
| 0.9.2    | 1006           | MELT East Daoifia Dica 15° 18°S         | E Pacific                  | Canalos et al. $(1990)$         |
| 0.9.2    | 1007           | East Pacific Pice at 0°05'N             | E Pacific                  | Singh et al. (2006)             |
| 9.0.2    | 1006 2001      | MCS Japan transh off parthern Hanshu    |                            | Singh et al. $(2000)$           |
| 9.8.2    | 1990-2001      | MCS Japan trench on northern Honshu     |                            | Isulu et al. (2007)             |
| 9.8.2    | 1997           | Nankai Trough MO104 line                | Sw Japan                   | Kodalra et al. (2000)           |
| 9.8.2    | 1997           | Sanriku region, off northern Honshu     | Off NE Japan               | lakanashi et al. (2004)         |
| 9.8.2    | 1998           | Japan trench cross lines                | Off N Japan                | Miura et al. (2003)             |
| 9.8.2    | 1999           | On-offshore in Shikoku                  | SW Japan                   | Kodaira et al. (2002)           |
| 9.8.2    | 1999           | Japan trench off Myagi, Honshu          | Off northern Japan         | Miura et al. (2005)             |
| 9.8.2    | 1999           | PAGANINI Galapagos Hot Spot             | Pacific Ocean              | Sallares et al. (2003)          |
| 9.8.2    | 2000           | GEOPECO off Peru                        | Peru-Pacific               | Krabbenhoeft et al. (2004)      |
| 9.8.2    | ca. 2000       | Nankai Trough MCS lines                 | S off Japan                | Park et al. (2002)              |
| 9.8.2    | 2000           | G-PRIME Galapagos Hot Spot              | Pacific Ocean              | Sallares et al. (2005)          |
| 9.8.2    | 2001           | SALIERI Galapagos Hot Spot              | Pacific Ocean              | Sallares et al. (2005)          |
| 9.8.3    | 1990–1993      | AGSO profiling off NW Australia         | Australia margin           | Finlayson (2010)                |
| 9.8.3    | 1991           | Kerguelen Plateau                       | Indian Ocean               | Operto and Charvis (1996)       |
| 9.8.3    | 1990s          | SW Indian Ridge                         | Indian Ocean               | Muller et al. (1999)            |
| 9.8.3    | 1992           | Banda Sea                               | Indian Ocean               | Finlayson (2010)                |
| 9.8.3    | 1997           | Makran subduction off Pakistan          | Indian Ocean               | Kopp et al. (2000)              |
| 983      | 1998           | Ninetveast Bidge                        | Indian Ocean               | Grevenever et al. (2001a)       |
| 9841     | 1989-1991      | Continental margin basins off NE Brazil | Southern Atlantic Ocean    | Mohriak et al. (1998)           |
| 9841     | 1991           | Ghana transform margin                  | South of Ghana             | Edwards and Whitmarsh (1997)    |
| 08/1     | 1002           | LEPLAC project off NE Brazil            | Southern Atlantic Ocean    | Gomes et al. (2000)             |
| 08/1     | 1005           | MAMBA continental margin Namibia        | Southern Atlantic Ocean    | Bauer et al. (2000)             |
| 08/1     | 1000           | Colorado Basin off Argentino            | Southern Atlantic Ocean    | Franke et al. (2000)            |
| 0.9.4.7  | 1000           | Great Motoor and other coamounts        | NE Atlantio                | Weigel and Grovemover (1999)    |
| 0 8 1 0  | 1000           | RAMESSES Pourianas Didas                | North Atlantia             | Navin at al (1009)              |
| 0.0.4.2  | 1005           |                                         | Control looland            | Darbychiro at al. (1990)        |
| 0 9 4 0  | 1000           |                                         | North control loolond      | Manka at al (1009)              |
| J.O.4.2  | 1990           | Dou<br>MADRE Mid Atlantic Dideo         | North Atlantia Occar       | $\frac{1}{2}$                   |
| 9.8.4.2  | 1996           | MARBE Mid-Atlantic Ridge                | North Atlantic Ocean       | Canales et al. (2000)           |
| 9.8.4.2  | 1996?          | BRIDGE Reykjanes Ridge                  | North Atlantic Ocean       | Sinna et al. (1999)             |
| 9.8.4.2  | 2000           | "Meteor (1986)" M47 5°S Fracture        | Off NW Africa              | Borus (2001)                    |
| 9.8.4.3  | 1990           | Scoresby Sud on-offshore                | Eastern Greenland          | Mandler and Jokat (1998)        |
| 9.8.4.3  | 1992           | Voering Margin off Lofoten              | Atlantic off Norway        | Mjelde et al. (1997)            |
| 9.8.4.3  | 1994           | FIRE Faeroe-Iceland Ridge Exp           | North Atlantic Ocean       | Smallwood et al. (1999)         |
| 9.8.4.3  | 1990s          | FAST-UNST-FLARE                         | Faroe– Shetland Isl        | England et al. (2005)           |
| 9.8.4.3  | 1994           | Scoresby Sud on-offshore                | Eastern Greenland          | Schmidt-Aursch and Jokat (2005) |
| 9.8.4.3  | 1994           | SE Greenland coast                      | SE Greenland               | Dahl-Jensen et al. (1998)       |
| 9.8.4.3  | 1996           | Voering Basin off Lofoten               | Atlantic off Norway        | Mjelde et al. (1998)            |
| 9.8.4.3  | 1996           | SIGMA Greenland Margin                  | Eastern Greenland          | Korenaga et al. (2000)          |
| 9.8.4.3  | 1997           | Porcupine Basin                         | West off Ireland           | Reston et al. (2004)            |
| 9.8.4.3  | 1998           | NW Barents Sea SE Spitsbergen           | North Atlantic Ocean       | Breivik et al. (2002)           |
| 9.8.4.3  | 1999           | RAPIDS 3 Rockall Project                | North Atlantic off Ireland | Mackenzie et al. (2002)         |
| 9.8.4.3  | 1999           | ARKTIS VV/2 NW Spitsbergen              | North Atlantic Ocean       | Czuba et al. (2004)             |
| 9.8.4.3  | 2000           | SCREECH Newfoundland basin              | Canada                     | Funck et al. (2003)             |
| 9843     | 2000           | Mendeleiev Ridge                        | Arctic Ocean               | Lebedeva-lvanova et al. (2006)  |
| *Data af | 2000           |                                         |                            |                                 |

\*Date of experiment assumed, not indicated by authors.

For example, by the year 2000, the PASSCAL and UTEP instrument pools in the United States had a total of 840 of the 1-component Texan instruments. In Europe, various groups had purchased 200 of the same instrument (Guterch et al., 2003a). Jones (1999) reports in detail on the equipment used by the end of the 1990s in marine seismic surveys.

The new decade starting in 2000 brought continuing advances in recording techniques. Digital technology, which had taken over recording devices for controlled-source seismology in the 1990s, was further improved, and, after many successful deployments, an updated design (RefTek-125A) for the Texan instrument was finalized in 2004. PASSCAL and the EarthScope program began to purchase these models immediately, and the UTEP (University of Texas at El Paso, USA) group focused on an upgrade path for the existing instruments. Via grants from several sources, UTEP obtained the funds needed to upgrade almost 400 of its units, and upgrades were under way by 2005 (Keller et al., 2005b). In a similar manner, the Australian equipment was steadily improved (Finlayson, 2010; Appendix 2-2).

In Britain, Leeds University purchased the Orion digital recording system and in 2000 the British seismic community (the NERC Geophysical Equipment Pool, Leicester, Cambridge, Leeds, and Royal Holloway) was awarded a grant to acquire large numbers of Guralp 6TD and 40T seismometers, together with a number of the Guralp 3Ts, bringing the British scientists to the forefront of observational broadband seismology (Maguire and SEIS-UK, 2002). In Germany during 2000, the GeoScience Center Potsdam started to gradually renew its instrumental pool for short-period and broadband seismology and replaced the wornout RefTek and PDAS data loggers with a new system, Earth Data PR6-24. Up to mid-2007 almost 240 of these new data loggers have been acquired and made available to the geophysical community. In addition, for special purposes 10 broadband GURALP units were bought. A major German cooperation between land and sea investigations promises a new instrumental pool, named DEPAS (Deutscher Pool für Aktive Seismologie). In early 2006, it consisted of 30 OBS and 65 GURALP seismometers plus Earth Data Loggers (EDL). This was the result of a joint venture between the German institutions GFZ (GeoForschungsZentrum Potsdam) and AWI (Alfred-Wegener-Institut Bremerhaven) for marine seismology (Schulze and Weber, 2006; Schmidt-Aursch et al., 2006). When completed, 100 Earth Data Loggers PR6-24 and 100 GURALP CMG-3ESP Compact units will be available for the land part of DEPAS. For the offshore part, 68 standard and 12 deep-sea OBS (Guralp CMG-40T seismometers plus hydrophones) and 5 OBH (hydrophones only) will be available.

With the large number of recording devices available, projects can now be planned which extend seismic surveys into three dimensions. Large-scale research programs which involved a multitude of cooperating institutions and interdisciplinary cooperation of scientists from various geoscientific fields continued to dominate the scene in the early 2000s. However, with the increasing number of recording devices and the capacity to deploy instruments over large areas, tomographic methodologies such as teleseismic tomography became viable. Many earth scientists started to prefer long-term deployments of instruments using natural events as energy sources instead of short-term projects using expensive controlled sources.

IRIS/PASSCAL in the United States and LITHOPROBE in Canada continue to support large seismic (active) and seismological (passive) projects, occasionally combined with international and interdisciplinary geoscientific priority programs in Europe and Africa, dealing with large-scale tectonic topics. EUROPROBE, supported by the European Science Foundation, continues to support programs concerned with the origin and evolution of the continents (Gee and Stephenson, 2006) emphasizing East-Central-West European collaboration and close multinational cooperation of geologists, geophysicists and geochemists. Examples include the multinational projects ALP 2002 and SUDETES 2003. Another example of trans-Atlantic partnership is the EAGLE project in Ethiopia.

Special sessions on large national and international seismic programs became important parts of the annual meetings of the various national and international geoscientific organizations, such as, e.g., the American Geophysical Union or the European Geophysical Union. Special meetings of earth scientists at regular intervals also continue such as the meetings of the special subcommission of the ESC (European Seismological Commission) "Structure of the Earth's Interior," and the series "International Symposia on Deep Seismic Profiling of the Continental Lithosphere," which continues biannually into the twenty-first century with meetings at Ulvik, Norway, in 2000 (Thybo, 2002), in Taupo, New Zealand, in 2003 (Davey and Jones, 2004), in Mont-Tremblant, Quebec, Canada, in 2004 (Snyder et al., 2006), in Hayama, Japan, in 2006 (Ito et al., 2009a), in Saariselkä, Finland, in 2008, and in Cairns, Queensland, Australia, in 2010.

In a similar way the seismic investigation of the oceanic lithosphere depended greatly on the development of instrumentation, logistics and theory and needed close cooperation with other marine sciences. The seismic structure of the oceanic crust and passive margins was reviewed by Minshull (2002) and published in Part A of the International Handbook of Earthquake and Engineering Seismology, edited by Lee et al. (2002). The structure of the oceanic crust, as known by 2000, is shown in chapters on P- and S-wave velocity structure, anisotropy and attenuation, and variations of crustal structure with spreading rate and with age. Other chapters deal with the seismic structure of the Moho and the uppermost oceanic mantle, of mid-ocean ridges, of oceanic fracture zone and segment boundaries, and hotspots, ocean islands, aseismic ridges and oceanic plateaus. In a textbook Marine Geophysics, Jones (1999) has described in much detail the instrumentation and methodologies, as used in marine seismic exploration until the end of the 1990s. Another summary of our knowledge of the structure of the lithosphere under the oceans, as obtained until 2000, was published in the Encyclopedia of Ocean Sciences (Steele et al., 2001), with individual contributions on instrumentation and on results on the seismic structure of the ocean in general and of special features as, e.g., mid-ocean ridges. For example, to concentrate the efforts of mid-oceanic ridge research worldwide, "InterRidge" was founded in 1993 to promote interdisciplinary, international studies of oceanic spreading centers through scientific exchange and the sharing of new technologies and facilities among international partners. Its members are research institutions dealing with marine research around the world. InterRidge is dedicated to sharing knowledge amongst the public, scientists, and governments and to provide a unified voice for ocean ridge researchers worldwide (www.interridge.org).

We have compiled a small number of major seismic projects, undertaken from 2001 to 2005 and mentioned in Chapter 10, in Table 2.10. For many projects undertaken since 2001, only limited information has become available by the end of 2005. We therefore emphasize that Table 2.10 is far from complete.

We have terminated our historical review of controlledsource seismic experiments with projects planned and carried out through 2005. The large number of recording devices available nowadays and their ability to record continuously over long time periods has enabled seismic surveys to be extended into three dimensions in a tendency to plan for seismic tomography surveys with teleseismic and/or local events as energy sources. Nevertheless, the interest within the geological and exploration communities for detailed crustal and upper mantle structure has remained until the present day. Many new controlled-source seismic projects have been performed just recently or are in the planning stage. In many situations, details of crustal structure can only be achieved by controlled-source seismic near-vertical incidence reflection seismics and/or seismic refraction/wide-angle reflection experiments with densely spaced controlled sources and a multitude of seismic recorders.

Based on the incredible wealth of data gathered during the past 50 years on seismic crustal structure studies, Walter Mooney started to build up a database, which we describe in some detail in Chapter 10. Its preliminary versions have so far enabled the construction of worldwide syntheses of crustal parameters (e.g., Christensen and Mooney, 1995; Mooney et al., 1998; Mooney, 2002). Another example is a synthesis of the seismic structure of the crust and uppermost mantle of North America and adjacent oceanic basins (Chulick and Mooney, 2002). Based on the database, crustal thickness maps were plotted for the world and for the individual continents, accompanied by maps showing the data points available in the database until ca. 2008.

| Chapter | Year      | Project                                    | Location                  | Reference                  |
|---------|-----------|--------------------------------------------|---------------------------|----------------------------|
| 10.2.1  | 2001      | IBERSEIS southwest Iberia Vibroseis survey | Spain                     | Carbonell et al. (2004)    |
| 10.2.1  | 2001      | IBERSEIS southwest Iberia wide-angle lines | Spain                     | Palomeras et al. (2009)    |
| 10.2.1  | 2000-2002 | Baltic Shield Kola peninsula lines         | Russia                    | Kostyuchenko et al. (2006) |
| 10.2.1  | 2001-2003 | FIRE deep seismic reflection survey        | Finland                   | FIRE consortium (2006)     |
| 10.2.1  | 2002-2003 | ISLE teleseismic project                   | Ireland                   | Landes et al. (2005)       |
| 10.2.1  | 2004–2005 | ESTRID Denish basin                        | Denmark                   | Thybo et al. (2006)        |
| 10.2.2  | 2001      | VRANCEA 2001 southeast Carpathians         | Romania                   | Hauser et al. (2007a)      |
| 10.2.2  | 2001      | DACIA PLAN Focsani basin                   | Romania                   | Panea et al. (2005)        |
| 10.2.2  | 2001      | SEISMARMARA                                | Turkey                    | Laigle et al. (2007)       |
| 10.2.2  | 2002      | ALP 2002 Alps and eastern plains           | Poland-Hungary            | Brueckl et al. (2003)      |
| 10.2.2  | 2002-2003 | ESRU Europrobe Urals                       | Russia                    | Kashubin et al. (2006)     |
| 10.2.2  | 2003      | SUDETES Bohemian Massif                    | Czech Republic and Poland | Guterch et al. (2003a)     |
| 10.2.2  | 2003      | GRUNDY 2003                                | Poland                    | Malinowsky et al. (2007)   |
| 10.2.2  | 2004      | DRACULA southeast Carpathians              | Romania                   | Enciu et al. (2009)        |
| 10.2.2  | 2005      | Black Sea basin                            | Turkey                    | Scott et al. (2006)        |
| 10.2.2  | 2005–2006 | DOBRE 2 Donbas fold belt                   | Ukraine                   | Starostenko et al. (2006)  |
| 10.3.1  | 2002      | SHIPS Georgia Street                       | Northwestern USA–Canada   | Brocher et al. (2003)      |
| 10.3.1  | 2004      | SAFOD central California refraction line   | California, USA           | Hole et al. (2006)         |
| 10.3.2  | 2002      | Walker Lane refraction survey              | California-Nevada, USA    | Louie et al. (2004)        |
| 10.3.2  | 2004      | Northwest Basin and Range                  | California-Nevada, USA    | Lerch et al. (2007)        |
| 10.3.2  | 2003      | Rio Grande rift (Potrillo Volcanic Field)  | Southwest New Mexico, USA | Averill (2007)             |
| 10.4.1  | 2001      | EAGLE East African Rift                    | Ethiopia                  | Maguire et al. (2003)      |
| 10.4.1  | 2002      | "Meteor (1986)" M52 offshore Israel        | Eastern Mediterranean     | Hübscher et al. (2003)     |
| 10.4.2  | 2004      | Jordan–Dead Sea Transform                  | Israel-Jordan             | ten Brink et al. (2006)    |
| 10.4.2  | 2006      | DESIRE southern Dead Sea                   | Israel-Jordan             | Mechie et al. (2009)       |
| 10.5.1  | 2004      | Naga thrust and fold belt                  | NE India                  | Jaiswal et al. (2008)      |
| 10.5.2  | 2000*     | Altyn Tagh Range                           | China                     | Zhao et al. (2006)         |
| 10.5.2  | 2000*     | 1000 km northeast Tibet to Ordos basin     | China                     | Liu et al. (2006)          |
| 10.5.3  | 2001      | South-central Honshu                       | Japan                     | lidaka et al. (2004)       |
| 10.5.3  | 2000s     | Nankai Trough–central Japan on-offshore    | Central Japan             | Kodaira et al. (2004)      |
| 10.5.3  | 2002–2003 | Reflection lines Tokyo area                | Central Japan             | Sato et al. (2006)         |
| 10.5.3  | 2002      | WNW-ESE line south Korean peninsula        | South Korea               | Kim et al. (2007)          |
| 10.5.3  | 2004      | Reflection lines Kinki area                | Southwestern Japan        | Sato et al. (2006)         |
| 10.5.3  | 2004      | NNW-SSE line south Korean peninsula        | South Korea               | Kim et al. (2007)          |
| 10.6.1  | 2001      | AGSNY Goldfield Province                   | Western Australia         | Goleby et al. (2004)       |
| 10.6.1  | 2003      | Gawler Craton South Australia              | Southern Australia        | Drummond et al. (2006)     |
| 10.6.1  | 2003–2004 | Curnamona region southern Australia        | Southern Australia        | Finlayson (2010)           |

TABLE 2.10. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN 2001–2005

# Chapter 2

TABLE 2.10. MAJOR CONTROLLED-SOURCE SEISMIC INVESTIGATIONS OF THE CRUST IN 2001–2005 (continued)

| Chapter  | Year           | Project                                                           | Location                     | Reference                       |
|----------|----------------|-------------------------------------------------------------------|------------------------------|---------------------------------|
| 10.6.1   | 2005           | Yilgarn Orogen on-offshore experiment                             | Western Australia            | Finlayson (2010)                |
| 10.6.1   | 2005           | Thomson-Lachlan orogens traverse                                  | Eastern Australia            | Finlayson (2010)                |
| 10.6.1   | 2005           | Tanami region Northern Territory                                  | Central Australia            | Finlayson (2010)                |
| 10.6.1   | 2001           | NIGHT Taupo Volcanic Zone                                         | Northern New Zealand         | Henrys et al. (2003)            |
| 10.6.1   | 2001           | Chatham Rise, offshore New Zealand                                | Off New Zealand              | Davy et al. (2008)              |
| 10.6.1   | 2003           | Bounty Trough east of South Island                                | Off New Zealand              | Grobys et al. (2007)            |
| 10.6.1   | 2003           | Great South Basin east of South Island                            | Off New Zealand              | Grobys et al. (2009)            |
| 10.6.1   | 2005           | Marine reflection experiment off east coast<br>North Island       | Off New Zealand              | Barker et al. (2009)            |
| 10.6.2   | 2003           | Onshore-offshore SW coast of South Africa                         | South Africa                 | Hirsch et al. (2009)            |
| 10.6.2   | 2005           | On-offshore Cape Fold Belt–Karoo Basin                            | South Africa                 | Stankiewicz et al. (2007)       |
| 10.6.2   | 2005           | Seismic reflection survey Karoo Basin                             | South Africa                 | Lindeque et al. (2007)          |
| 10.6.3   | 2001           | ECCO Oriental basin                                               | Venezuela                    | Schmitz et al. (2005)           |
| 10.6.3   | 2004           | BOLIVAR off Venezuela                                             | Venezuela-Caribbean          | Magnani et al. (2009)           |
| 10.6.3   | 2001           | SPOC Subduction processes off Chile                               | Chile                        | Krawczyk et al. (2003)          |
| 10.6.3   | 2004–2005      | TIPTEQ seismic array project                                      | Chile                        | Rietbrock et al. (2005)         |
| 10.7.2   | 2000–2004      | Australian margins                                                | East and south off Australia | Finlayson (2010)                |
| 10.7.2   | 2001           | SALIERI Galapagos volcanic                                        | East Pacific                 | Sallares et al. (2003)          |
| 10.7.2   | 2001           | Tonga Ridge                                                       | Southwest Pacific            | Crawford et al. (2003)          |
| 10.7.2   | 2004           | New Caledonia                                                     | Southwest Pacific            | Lafoy et al. (2005)             |
| 10.7.2   | 2004?          | Nankai Trough 3 parallel lines                                    | South off Japan              | Kodaira et al. (2006)           |
| 10.7.2   | 2004           | Izu arc wide-angle project                                        | South off Japan              | Kodaira et al. (2007a)          |
| 10.7.2   | 2005           | Bonin arc wide-angle project                                      | South off Japan              | Kodaira et al. (2007b)          |
| 10.7.2   | 2005           | Refr survey of Nicaragua                                          | Off Central America          | Ivandic et al. (2010)           |
| 10.7.3   | 2000–2004      | Australian margins                                                | West and south off Australia | Finlayson (2010)                |
| 10.7.3   | 2003           | Seychelles-Laxmi Ridge                                            | Indian Ocean                 | Collier et al. (2004)           |
| 10.7.4   | 2002           | RAPIDS-4 Rockall basin off Ireland                                | North Atlantic               | O'Reilly et al. (2006)          |
| 10.7.4   | 2002           | HADES Hatton Deep                                                 | North Atlantic               | Chabert et al. (2006)           |
| 10.7.4   | 2003           | Onshore-offshore southwestern South Africa                        | South Atlantic               | Hirsch et al. (2009)            |
| 10.7.4   | 2003           | Continental margin off French Guiana                              | South Atlantic               | Greenroyd et al. (2006)         |
| 10.7.4   | 2003           | EUROMARGINS eastern Greenland                                     | North Atlantic               | Schmidt-Aursch and Jokat (2005) |
| 10.7.4   | 2004           | Continental margin off Uruguay                                    | South Atlantic               | Temmler et al. (2006)           |
| 10.7.4   | 2004           | "Meteor (1986)" M62-3 Cape Verde Island                           | South Atlantic               | Grevemeyer et al. (2009)        |
| 10.7.4   | 2004           | "Meteor (1986)" M62-4 Mid-Atlantic Ridge                          | South Atlantic               | Reston et al. (2009)            |
| 1074     | 0004           | / 5<br>"Motoor (1006)" MG1 0 off Iroland                          | North Atlantia               | Deptop at al. (2006)            |
| 10.7.4   | 2004           | Nieleor (1980) Nio 1-2 Oli Irelanu<br>Dereupine Regin off Ireland | North Atlantic               | $\frac{1}{2}$                   |
| 10.7.4   | 2004           | Onchara offehore couthorn coast South Africa                      | North Allantic               | Rauser et al. (2007)            |
| 10.7.4   | 2005           | Unshore-Unshore Southern coast South Africa                       | South Allantic               | raisiegia et al. (2007)         |
| *Date of | experiment ass | umed: not indicated by authors.                                   |                              |                                 |